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Summary

We consider non-linear regression model when the index variable is multidimensional.
Sufficient conditions on the non-linear function are given under which the least squares es-
timators are strongly consistent and asymptotically normally distributed. These sufficient
conditions are satisfied by harmonic type functions, which are also of interest in one di-
mensional index case where Wu’s (1981) and Jennrich’s (1969) sufficient conditions are not

applicable.



1 Introduction.

Statistical modeling with multidimensional indices is an important problem in spatial or
tempro-spatial process, in signal processing, and in texture modeling. For example, suppose
the problem is to model the growth of vegetation in a particular farm over a period of time.
This requires the modeling with three dimensional indices. For examples in signal processing,
see Rao, Zhao and Zhou (1994) and McClellan (1982). For examples in texture modeling, see
Francos, Meiri and Porot (1993), Yuan and Subba Rao (1993), and Mandrekar and Zhang
(1996). Most of the models in these areas are non-linear regression models. There has been
extensive work in the literature on non-linear regression models with one dimensional index
(Wu (1981), Jennrich (1969), and Gallant (1987)). A non-linear regression model with one

dimensional index can be defined as follows

ye = f(2,0) + ¢, t=1,2,...,n, (1)

where the observed data is {y;, t = 1...n}, ,, t = 1...n are some known constants,
0 € ® C R? is an unknown parameter vector, ¢, t = 1...n are the random errors, and f
is a known function. The problem of estimating 8 has been investigated quite extensively
in literature. Wu (1981) and Jennrich (1969) gave some sufficient conditions based on the
function f and the design to establish certain asymptotic properties of the least squares
estimators. These conditions, however, are not satisfied if the function f is of harmonic type

(Kundu (1993)).



In the present work, we consider an extension to (1) with multidimensional indices,

yt:f(xt70)+6t7 t <n, (2)
where t = (t1,t5,...,#) and n = (ny,ng,...,n;) € N¥ (set of k& dimensional non-negative
integer values), < denotes the partial ordering, i.e., for m = (my,ma,...,m;) € N*¥ and

n=(ny,n,....,np) EN m<nifm; <n;fori=1,....k, {et, t e Nk} is an independent

field of random variables such that
E(et) =0 and Var(e) =0 Vte NF¥, (3)

0 ¢ ® C R is a parameter vector, {x;, t € N*} a set of known constant vectors, and f is a

known non-linear function.

Remark. For signal processing models (see Rao, Zhao and Zhou (1994) for an example),
Yt, f(+,-) and € are complex valued. Here for notational convenience we only assume them

to be real valued.

A natural choice of estimating 8 is by least squares methods, i.e., by minimizing

Qu(0) = lye — f(xe, O)I°. (4)

t<n
Here we will not deal with the numerical method of estimating 8. Our aim will be to
find sufficient conditions on function f(-,-) so that the least squares estimators are strongly

consistent and are asymptotically normally distributed as |n| = [T%, n; — oo. Note that



consistency and asymptotic normality as |n| — oo provide much stronger results than con-
sistency and asymptotic normality as min(ny,na,...,n,) — oo, as assumed, for example,
in Rao, Zhao and Zhou. Our results will also be of interest in one dimensional case since

they can be applied to harmonic type functions which do not satisty Wu’s and Jennrich’s

sufficient conditions (Kundu (1993)).

To illustrate, we will consider the following example which can be used to model textures

(Yuan and Subba Rao (1993) and Mandrekar and Zhang (1996)):

P
Yg = Z apcos(ti A + t2hag) + €, (5)

k=1
where t = (#1,12), ay’s are real unknown parameters, and Ay, Ay are unknown parameters

in [0, x].

This model will be taken up in details in Section 2 as well as in Section 3. In Section 2, we
will present sufficient conditions in terms of function f to establish strong consistency of 0,.
In Section 3, sufficient conditions for the asymptotic normality of 6, will be given and we

will obtain its asymptotic distribution.

2 Strong Consistency.

Let 8y be the true parameter vector. Our objective is to prove the strong consistency of

8, in the sense that 8, — 8, a.s. as In| — oo. Note that if {y, 1 < t < n}, where



1=(1,1,...,1) € N* is the observed data, then the total number of observations is |n|. To
prove the strong consistency, we need the following lemma which is similar to lemma 1 of

Wu (1981).

Lemma 2.1. Let {Qn(0)} be a field of measurable functions such that

lim inf inf Qn(0) — Qu(80)) >0 a.s. (6)

nl—co |9-B,>s m| "
for every 6 > 0. Then 6, which mimnimizes Qn(0) converges to Oy a.s. as |n| — oo.

Proof: Suppose 8, /4 8 a.s. as |n| — co. Then there exists a subsequence {n,, s > 1}

~

and 6 > 0 such that |8,, — 8y| > 6 for all s > 1 with positive probability. Thus, from (6),

Qns (ans) - Qns(eo) >0

with positive probability for all s > M, for some M > 0. This contradicts the fact that éns

is a least squares estimator.

We now make the following assumptions:
Assumption 1: The parameter space © is compact.

Assumption 2: The function f(x,-) satisfies

(Z) |f(Xt701) - f(Xt702)| < at|01 - 02| for all 01 7£ 027

where ay > 0, t € N* are some constants such that Y ay = o(|n|’),
t<n



(41) sup | f(x¢,0)] < My for some My > 0.
tenk0c@

Assumption 3:

1
lim inf inf — f(x¢,0 X, 0 > 0.
L g Tl k)~ 00l

Let 8, denote the least squares estimator which minimizes (4).
Theorem 2.2. Under Assumptions 1 — 3, and (3), 0, — 6, a.s. as In| — oo.

Proof: Observe that

T (Qn(e) - Q % Z Xt7 f(Xtveo Z Xt7 f(Xtveo)] €t
t<n t<n

From Assumption 3, the first term on the RHS of the above equality is positive. Thus, from

Lemma 2.1, the consistency of 8, follows if we prove the following

sup 1 I (x¢,0) — f(x¢,00)] et = 0 a.s. as |n|]— oo. (7)

10-6,|>5 In| 15
Now, since in view of Assumption 2, the function d(x,80) = f(xt,80) — f(x4,80) is bounded,
ie.

Y

wp |d(xe. 0)] < oc.
tenk, Bc®

and since it satisfies the condition (??) bleow, (7) follows from the following Lemma.

Lemma 2.3. Let g(x¢,-) be such that



(Z) |9(Xta 91) - Q(Xta 92)| < a¢l@y — 03], forall 6, # 8, (8)

where Yien ax = o(|nf?),

) s lg(x8) = B < oo, 9)
tenk 0c®

and let {e;, t € N*} be i.i.d. real valued random field with mean 0 and variance o2, then

1

sup |— g(x¢,0) el — 0 a.s. as |n| — oo.

06@ |H| t<n

Proof: To prove this, we use the following result of Mikosch and Norvaisa (1987) on

Banach space valued random field.

Let {Xn,n € Nk} be a field of Banach space valued random variables with a norm || - ||.
Let {an,n € N*} be a field of positive numbers such that limy|~oo an = 00, it satisfies the

conditions A — D of Mikosch and Norvaisa (1987), and
{an} € k= ({an}: 2:.j_3L4j|::C)(q_2|/%|)v Q'_’OO) ) (10)
j=q
where A; ={n:ay < j}, and |A,| is the cardinality of A;.

If there exists a constant ¢ > 0 and a positive random variable X such that

sup P (| Xn||>2)<eP(X >2) VYa>0, (11)
neNF®
and
Y P(X >ay) < oo, (12)
nelNF



1
then lim — Z X;=0 a.s. s equivalent to

[nf—co ay j<n

1
|l|im — > Xj =0 in probability. (13)
n|—oo dp an

We define Xy = g(x4,0) ¢;. Then {X;, t € N¥} is a field of (/(8)-valued random variables,
where C'(0) is the space of continuous function on the compact metric space with the sup

norm. Define a, = |n|. It is easy to see that {a,, n € N*} satisfy the conditions A — D of

Mikasch and Norvaisa (1987).

Now, from the above mentioned result of Mikasch and Norvaisa, it suffices to show that
{ay, n € N*} and {X,, n € N*} satisfy (10) - (13).
To show (10), we need to prove
> A = 0(g7 [A]), as g — oo (14)
J=q

Using mathematical induction, it can be shown that

)k—l )k—?

.| (Iny (Iny
// dyy...dy, =3 (k—l)!_(k—Z)! .

1<ys Y2y <J

Therefore
|A;] ~ j(Inj)*=" as j — oo, (15)

Thus

J=q

DAL~ DD ()
J=q

~ /qoo y 2 (Iny)" " dy. (16)

8



(The notation b; ~ ¢; means b;/c; = O(1), ¢;/b; = O(1), i.e., as § — 0o Myc; < b; < Maye;

for some My, My > 0.)

Now, since

0<y? [(ln )t — (In M)k_l] <y VvV y>M,
where M is sufficiently large, we have
0< /oo y 2 (Iny)*tdy — (In M)*! /Oo y 2t dy < 0.
M M
We now conclude, from (15) and (16), that
Y i Al ~ / y 2 (Iny)*tdy ~ ¢ (Ing)*!
i=q 4
~ O(¢?|Ay]), as ¢— oo
This proves (14).
To prove (11) and (12), note that, since g(x¢, 8) is bounded, for any x > 0,

P Xe [[> z) =P (Sup ‘g(xtv 9)

0c0

leg| > :1;) < P(Rler] > @), (17)

where R is the upper bound of |g(-,-)|. Now, substituting X = R |e1], we get

S P> < Y BT e (13)

nelNk neNk |rl|2

The inequalities (17) and (18) prove (11) and (12) respectively.

To prove (13), we first note that, from (8), X, t < n are independent random variables with

9



mean zero belonging to a subspace of C'(@),
Lip(C(®))={h € C(O) : |h(01) — h(82)] < A|; — 8,)| for all 8, # 6},

where A is some positive constant.

Therefore from the inequality (6) (of Appendix) of Wu (1981), we have
E|IYXi)? < KDY E||X¢[;, for some K < oo, (19)
t<n t<n

where, for h € Lip (C(@®)), the norm || - || is defined as

|1:(61) — h(85)]|

61— 05)]
IR

2
E
5 t<n
> — |1’1|2 52

K3 B Xl

t<n
|n|2 52

K S ot E ()

t<n

[1Allz = sup +11(6.)]; (20)

0.+0,

for 8, some fixed point in @.

Now, from (19), for any 6 > 0, we have

1
Pl =
|

N

> X

t<n

|n|2 52

Koy |l g(xe. )z

t<n
|1’1|2 52

From (8), (9) and (20), we have

llg(xe, )|l < Ac+ B forall t € N¥.

10



Thus, from (27),

1
Pl =
|

This completes the proof of Lemma 2.3 and thus the proot of Theorem 2.2.

t<mn
|1’1|2 52

> 6

X

t<n

— Qas |n| — oc.

) 2K o? (Z Af + HnHB)
<

We now show that the least squares estimators for model (5) are strongly consistent under

the assumption (3). For notational convenience, we assume that p = 1 and deal only with
Yt = OéCOS()\ltl + )\2t2) + €, 1 S t S n, (22)

where Ay, Ay € [0, 7]. Further, we assume that |o| < M < oo, for some M > 0. This is a

reasonable assumption since a represents the amplitute of the waves.

To prove the strong consistency, via Theorem 2.2, it suffices to show that Assumptions 1 —

3 are satisfied for this model.

We let 8 = (a, A1, Ax)Tand Og = (ay, Ao, Aao)T € © = [—=M, M] x [0, 7]%. Clearly Assump-

tions 1 and 2 are satisfied by taking Ay = 1 and M, = M. To varify Assumption 3, note

that
1 2
m Z [ cos(A1t1 + Aata) — v, cos(Aiot1 + Asot2)]
t<n

1 [ ei(/\1t1+/\2t2) + e—i(/\1t1+/\2t2) ei(/\lot1+/\2ot2) + e—i(/\lot1+/\2ot2) 2

= — o — a,
In| 2 2

— a_2 2 _I_ L Z e?i(A1t1+A2t2) _I_ L Z e—?i(A1t1+A2t2)
4 |n| t<n |n| t<n

11



2
_I_% 24 L 62i(/\1ot1+/\2ot2) T L e—Qi(/\1ot1+/\2ot2)
4

|n| tSn |n| tSn

aQy, Z[ei((/\1+/\1o)t1+(/\2+/\20)t2) + e A o)t + (A2 HA20)12)

2|n| =

_I_ei((/\1—/\1o)t1+(/\2—/\2o)t2) T e—i(/\1—/\1o)t1 +(/\2—/\2o)t2] (23)

Now, since, for all w; and wy € (0,27),

_ einlwl)(l _ e’ingu&)

Z ei(wlt1+WQt2) — ei(W1+WQ)(]‘ i i
(1 _ ezwl)(l _ 6“”2)

t<n

the Assumption 3 follows from (23).

3 Asymptotic Normality.

Observe that the least squares estimator 8, is a zero of Q. (0) = 0. (Primes are used to
denote the derivatives with respect to @). Thus expanding @)}, (8) about 8¢ (true parameter

value) and evaluating it at 8y, we get

0= Qu(00) + Qn(8.) (8u—60) . (24)
where 8,, = h8y + (1 — h) 8, for some 0 < h < 1.
Note that

Qu(®) = =23 (g — f(x4,0)) f'(x4,0) (25)
Qn(0) = =237 (yo — f(x4,0)) ["(x0,0) +2 3 [ (xe. O] [f' (x4, 6)]"  (26)



= —2 Z 6tf” (Xtve)) +2 Z [f(Xtve) - f(Xtveo)] f”(Xtve)

t<n t<n

230 [ (%0, 0)] [ (x4, 0)]" .

t<n

Now, we impose the following assumptions on the function f(-,-) in addition to the Assump-

tions 1 — 3.
Assumption 4: f(xt,-) is twice continuously differentiable in @.

Assumption 5: Let {D,, n € N*} be a field of & x k non-singular matrices such that

1
|— DY > (%, 0)] [f (x4, 0)]T Dy converges to a positive definite matrix
t<n

¥(8p) uniformly as [n| — oo and |8 — 8| — 0.

(47) | | D > [f(x¢,0) — f(x¢,80)] f” (x¢,0) Dy — 0 uniformly as [n| — oo and
n t<n
|0 — 00| — 0,

(iii) | DL f"(x.6)

n|, < M for all @ € ®. Here || - ||g is the Euclidean norm on matrices.

(iv) | DECF"(x0,00) = f"(x1,65))

n B S bt,n|01 — 02| fOI’ ELH 01 7£ 02,

where by, > 0,t € N are some constants such that >t<n Dt = o([n]?).

(v) max

T g
1<t<n |r1| HD Xt’eo)H — 0 as [n] — co.

Theorem 3.1. Under Assumptions 1 — 5 and (3),

| (Dy)™" (8n — 80) == Ny, (0.02X7"(8o)) as [n| — oo,

13



Proof: From (24)

Jin D" (8- 8,) = - (ﬁl—| DI Q1 (8.) Dn) CLorgue). e

Now, from (26),

L DIQue) Dy = —2— % @ [DT " (x,8) D] (28)
n| In| {25
+2 _DT Z Xt7 (Xtveo)] f” (Xtve) Dﬂ
|H| t<n
+|—DT S 1 (%6 0)] [ (x4, 0)]" Da.
t<n

Using Assumption b parts (¢2¢) and (¢v), it can be shown as in the proof of Lemma 2.3 that

€t DT //(Xt, 0) D

sup

— 0 in probability as |n| — oc. (29)
0cO

||t<n B

Since 8, — 8 a.s., 8., — B a.s. as In| — oo, thus from (33), (34), and Assumption 5 parts

(¢) and (¢2), we obtain

1 —
HDE Qn (0*,1) Dy — 2%(0p) as. as  |n| — oo. (30)
n
From (25)
1 T M 2 T pt
—=D, Q,(00) = ——= > e« D, ['(xt,00). (31)
n| In| t<n

To establish the asymptotic normality of the above, we first state the multidimension indices

version of the Hajek-Sidek Theorem (Sen and Singer (1993)).

Lemma 3.2.  Let {X,, n € N*} be a field of independent and identically distributed
random variables with mean p and variance 0%, and let {cymn, m < n € N*} be a field of

14



real numbers such that

2

cm,n

max ———<——-—
1<m<n E 62
- = m,n

— 0 as |n| — oo.
m<n
Then
Z clzn,n (Xm - lu)

m<n L
—
E 2
Cmn
m<n

The proof of this follows along the standard lines of Hajeck-Sidek Theorem.

N(0,0%) as |n| — oo.

Using this Lemma, and Assumption 5 parts (i) and (iv), we have, for any A € R¥,

AT Z €t Dz f/(Xt,eo)
fen £, N(0,02).

AT 3 DI (%, 80)] [/ (xe, 80)]" Du A

t<n

From Assumption 5 (7), we obtain

> |1 | > e Dy f'(%4,60) N (0702 )‘TZ(QO))‘) for any A € RY,
n| t<n
and in view of (29),
1
DI QL (80) =5 N (0,1075(6,)) .

|

Now, the proof of the theorem follows from (27) and (30).

Remark. If Assumption 5 holds only for a subsequence of {n, n € N*} such that |n| — oo,
then the result of Theorem 3.1 holds for that subsequence. This will be seen in the example

below.

15



We now consider asymptotic normality of the least squares estimators for model (5). We will
show that the parameters of the asymptotic normal distribution depend on subsequences of
n. Asymptotic normality can be obtained for two types of sequences: (7) a subsequence for
which min(nq,n2) — oo, and (i¢) a subsequence for which any one of n; and ny — oo while
the other kept constant. For notational convenience, as in Section 2, we assume that p = 1
and deal only with model (22). Let én = (651175\1117 XQH)T be the least squares estimators,

and 8y = (ao, Ao, A2o)? be the true parameter vector. Let
Dy = Diag (l,nfl,nz_l) .

In order to apply Theorem 3.1, we need to verify Assumptions 4 and 5. Assumption 4 is

clearly satisfied. To verify Assumption 5, observe that

COS(tl)\l + tz)\g)
f/(Xt7 0) = — tl Siﬂ(tl)\l + tg)\g) . (32)

— tg Siﬂ(tl )\1 + tg)\g)

Thus

S e O (x4,8)]" = (33)

t<n

Ztgn COSz(tl)\l —|— tz)\g) —% Ztgn tl Siﬂ Q(tl)\l —|— tg)\g) —% Ztgn tg Siﬂ Q(tl)\l —|— tg)\g)

—% Ztgn tl Siﬂ Q(tl)\l —|— tz)\g) Oé2 Ztgn t% Siﬂ2(t1)\1 —|— tg)\g) Oé2 Ztgn tltg SiHZ(tl)\l —|— tg)\g)

i —% Ztgn tg Siﬂ Q(tl)\l —|— tz)\g) Oé2 Ztgn tltz Siﬂ2(t1)\1 —|— tg)\g) Oé2 Ztgn t% SiHZ(tl)\l —|— tg)\g)

16



Note that

1 . .
Z cos 2 (tl)\l + t2)\2) = — Z [622(t1/\1+t2/\2) T e—22(t1/\1+t2/\2)] (34)
t<n 2 t<n
:l Z e?ix\ltl Z e?i/\gtg T Z e—?ix\ltl Z e—?i/\QtQ
2 _1§t1§n1 lstgsng lgtlgnl lstgsng
B 21\ 1n 2t Aon —2tA\1n —2i1A\1n
_ L i) (1 - 1) (1 - 2) 4 em2i0ute) (1 - 1) (1 - 1)
2 (1 _ e?ix\l) (1 _ e?i/\g) (1 _ e—2i/\1) (1 _ e—2i/\2) '

This term is of order O(1). This implies that

1 9 1 1 1
— L+t h) = -+ — 2 (T A + LA — .
|n|‘§1COS(1 1+ 12)2) 2-|-2|n|t<ncos (t1 1—|-22)—>2as In| — oo

By differentiating (34) with respect to Ay, we get

Z tl sin Q(tl)\l + tz)\g) == O(nl)

t<n
Thus
1 1 .
— Z ty sin2(t1 A1 + t2A2) — 0 as  |n| — oo.
|H| n t<n

Similarly, it can be seen that

1 1
m — Z ty sin?(t A +1202) — 0 as  |n| — oo.
2 t<n

By differentiating (34) twice with respect to A1, we get

Z t% COS Q(tl)\l + tg)\g) == O(n%)

t<n

17



Thus

1

|r1| nl

1 1 1
Z tl Slﬂ tl)\l —|— t2)\2) = 2— —% ; _ 2_

t<n

le —

Z cos 2 tl)\l + tg)\g)
t<n

(n1 + 1)(2711 + 1) 1 1 2 2
- Ny f A + L)
1202 2n| n2 & 1P (A1 + 1),

converges to 1/6 if min(ny,ny) — oo or if n; — oo, and converges to (ny + 1)(2ny + 1)/12n3

if ny 1s fixed but ny — oo.

Similarly, it can be seen that = 2t<n hilgsin 2(ti M1 +12A2) converges to 1/8 if min(ny, ny)

|n|nn

— 00, and converges to (ny 4+ 1)/8ny if ny is fixed but ny — oo, and converges to (nz +

1)/8ny if ny is fixed but ny — oco. Also =

Inl 2

ZKH t2 sin? 2(¢; A1 + t9\;) converges to 1/6 if
min(ny,n2) — oo or if ng — oo, and converges to (ny + 1)(2ny + 1)/12n2 if ny is fixed but

ny — Q.

Thus, we have that Assumption 5 (¢) is satisfied with

Y(00) = | ¢ a2/6 a2/3 if  min(ny, ne) — oo, (35)

0 a2/8 ad/6

with ) }
! 0 0
¥(60) = | ¢ ol (n1+11)2(2§1+1) o? (n§+1) if nyis fixed but ny — oo, (36)
0 al —(nglsll) al/6

18



and with

% 0 0
¥(60) = | ¢ oz%/6 oz% W;;l) if neis fixed but n; — oo. (37)

0 a2 (na+1) 2 (n24+1)(2n2+1)
0 8ny 0 12n2

It is easy to see that Assumption 5 parts (zi¢) and (iv) are satisfied. To verify Assumption
5 (22), note that

LDE Z [f(Xtve) - f(Xt700)] f”(Xt700) Dy = LDE Z [f/(Xtaet*)]T (9—90) f”(Xt,Q)Dn,

|n| tSn |n| tSn
where 8¢« = hi8g + (1 — ht)@  for some 0 < h, < 1.

Assumption 5 (¢7) now can be verified from (32) and Assumption 5 (7).

Thus, from the remark after the proof of Theorem 3.1, we conclude that
|r1| ((6& — Oéo), (a0 (5\1 — )\10) , Mo (Xg — )\20)) i) N3 (0,0’2 2_1(00))

as either min(ny,ny) — oo, or ny — oo while ny is held fixed, or ny — oo while ny is held

fixed, where ¥(8y) is given by (35) — (37) for the appropriate subsequences.
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