A Bayesian decision theoretic solution to the problem related to microarray data with consideration of intra-correlation among the affected genes

By
Naveen K. Bansal
Marquette University
Milwaukee, Wisconsin (USA)
Email: naveen.bansal@mu.edu
http://www.mscs.mu.edu/~naveen/

With
Dr. Klaus Miescke
University of Illinois-Chicago
Illinois (USA)
When the genes are altered under adverse condition, such as cancer, the affected genes show under or over expression in a microarray.

$$X_i \sim Expression \quad Level$$

$$X_i \sim P(\theta_i, \alpha)$$

$$H_0^i : \theta_i = 0 \quad vs \quad H_{-1}^i : \theta_i < 0 \quad or \quad H_1^i : \theta_i > 0$$

The objective is to find the genes with under expressions and genes with over expressions.
Probability Model: $P(\theta, \alpha)$

$H_0: \theta = \theta_0$ (say, 0) vs $H_1: \theta < \theta_0$, $H_2: \theta > \theta_0$

Directional Error (Type III error):

Sarkar and Zhou (2008, JSPI)
Finner (1999, AS)
Shaffer (2002, Psychological Methods)
Lehmann (1952, AMS; 1957, AMS)

Main points of these work is that if the objective is to find the true Direction of the alternative after rejecting the null, then a Type III error must be controlled instead of Type I error.

Type III error is defined as $P(\text{false directional error if the null is rejected})$. The traditional method does not control the directional error. For example,

$|t| > t_{\alpha/2}$, and $t > t_{\alpha/2}$, an error occurs if $\theta < 0$.

Pre-ICM Int. Convention, 2008
Bayesian Decision Theoretic Framework

Probability Model: $P(\theta, \alpha)$

$H_0: \theta = \theta_0 \ (say, 0), \ H_1: \theta < \theta_0, \ H_2: \theta > \theta_0$

$\pi(\theta) = p_{-1}\pi_{-1}(\theta) + p_0\pi_0(\theta) + p_1\pi_1(\theta)$

where

$\pi_{-1}(\theta) = g_{-1}(\theta)I(\theta < 0), \ \pi_0(\theta) = I(\theta = 0), \ g_1(\theta)I(\theta > 0)$

$g_{-1}(\cdot) –$ density with support contained in $(-\infty, 0)$

$g_1(\cdot) –$ density with support contained in $(0, \infty)$

$A = \{-1, 0, 1\}, \ L(\theta, a) –$ loss for taking action $a \in A.$
g_{-1} and g_1 could be truncated densities of a density on θ.

The skewness in the prior is introduced by (p_{-1}, p_0, p_1).

$p_{-1} < p_1$ reflects that the right tail is more likely than the left tail.

$p_{-1} = 0$ (or $p_1 = 0$) would yield a one-tail test.

$p_{-1} = p_1$ with g_{-1} and g_1 as truncated of a symmetric density would yield a two-tail test.

p_{-1} and p_1 can be assigned based on what tail is more important.
To introduce the correlation among under expressed and over expressed genes, we can modify the priors with $g_{-1}(\theta | \beta)$ and $g_{+}(\theta | \gamma)$ depending on the parameters β and γ.

A prior on β and γ introduces correlation among underexpressed genes and over expressed genes.
The Bayes risk for a decision rule δ is given by

$$r^\delta(\pi) = p_{-1} r_{-1}^\delta(\pi_{-1}) + p_0 r_0^\delta(0) + p_1 r_1^\delta(\pi_1)$$

where

$$r_{-1}^\delta(\pi_{-1}) = \int_{\theta < 0} R(\theta, \delta)\pi_{-1}(\theta)d\theta$$

$$r_1^\delta(\pi_1) = \int_{\theta > 0} R(\theta, \delta)\pi_1(\theta)d\theta$$

$$r_0^\delta(0) = R(0, \delta)$$

For a fixed prior π, decision rules can be compared by comparing the space

$$S(\pi) = \{(r_{-1}^\delta(\pi_{-1}), r_0^\delta(0), r_1^\delta(\pi_1)) : \delta \in D^*\}$$

consider the class of all rules δ for which $R(0, \delta)$ are the same.
Consider the following two priors

$$\pi(\theta) = p_{-1}\pi_{-1}(\theta) + p_0\pi_0(\theta) + p_1\pi_1(\theta),$$

$$\pi'(\theta) = p'_{-1}\pi'_{-1}(\theta) + p'0\pi'0(\theta) + p'1\pi'1(\theta)$$

$$p_1 > p'_1 \text{ (i.e. } H_1 \text{ is more likely under } \pi \text{ in comparison to } \pi')$$

Theorem 1: If \(p_1 > p'_1 \), and if \(\delta_B \) and \(\delta'_B \) are the Bayes rules under \(\pi \) and \(\pi' \) respectively, then

$$r_1^{\delta_B}(\pi) \leq r_1^{\delta'_B}(\pi')$$

and

$$r_{-1}^{\delta_B}(\pi) \geq r_{-1}^{\delta'_B}(\pi')$$

Remark: This theorem implies that if apriori it is known that \(H_1 \) is more likely than \(H'_{-1} \) \((p_1 > p_{-1}) \), then the average risk of the Bayes rule in the positive direction will be smaller than average risk in the negative direction.
An Application:

An experiment was conducted to see the effect of a sequence knockdown from non-coding genes. Hypothesis was that this knockdown will cause the overexpression of the mRNAs of the coding genes. The implication of this is that this will show how the non-coding genes interact with coding genes. In other words, non-coding genes also play a part in protein synthesis.

Here it can be assumed that the effect of knockdown on the coding genes (if there is any) would be mostly overexpression of mRNAs than underexpression of mRNAs. **The objective would be to detect as many of overexpressed genes as possible.**
Relationship with the False Discovery Rates

Consider the "0-1" loss

\[
L(\theta,-1) = \begin{cases}
0 & \theta < 0 \\
1 & \theta \geq 0
\end{cases} \quad L(\theta,0) = \begin{cases}
0 & \theta = 0 \\
1 & \theta \neq 0
\end{cases} \quad L(\theta,1) = \begin{cases}
0 & \theta > 0 \\
1 & \theta \leq 0
\end{cases}
\]

\[
R(\theta, \delta) = \begin{cases}
P_\theta(\delta \geq 0) & \theta < 0 \\
P_\theta(\delta = 0) & \theta = 0 \\
P_\theta(\delta \geq 0) & \theta > 0
\end{cases}
\]

\[
r_{-1}^{\delta_b} (\pi) = \int_{\theta < 0} P_\theta(\delta \geq 0) \pi_{-1}(\theta) d\theta = E[P(\theta < 0 | \delta \geq 0)]
\]

which is expected false non-negative discovery rate in the Bayesian framework.

Similarly \(r_{1}^{\delta_b} (\pi) \) can be interpreted as expected false non-positive discovery rate, and \(r_{0}^{\delta_b} (\pi) \) as expected false non-discovery rate. \(r^{\delta_b} (\pi) \) is the weighted average of these false discoveries.
\{X_i, i = 1, 2, ..., N\} independent t data with

\[X_i \sim f(x_i; \theta_i, \alpha), i = 1, 2, ..., N\]

Consider the following multiple hypotheses problem:

\[H^i_0: \theta_i = 0, H^i_{-1}: \theta_i < 0, H^i_1: \theta_i > 0\]

\[\theta_i \sim p_{-1} \pi_{-1}(\theta) + p_0 \pi_0(\theta) + p_1 \pi_1(\theta), i = 1, 2, ..., N\] independent t

\[\delta^i_B \in \{-1, 0, 1\} - \text{non-randomized Bayes rule}\]
Table 1
Possible outcomes from m hypothesis tests

<table>
<thead>
<tr>
<th></th>
<th>Accept H_0</th>
<th>Accept H_{-1}</th>
<th>Accept H_1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>U</td>
<td>V_1</td>
<td>V_2</td>
<td>m_0</td>
</tr>
<tr>
<td>H_{-1} is true</td>
<td>T_1</td>
<td>S_1</td>
<td>W_2</td>
<td>m_1</td>
</tr>
<tr>
<td>H_1 is true</td>
<td>T_2</td>
<td>W_1</td>
<td>S_2</td>
<td>m_2</td>
</tr>
<tr>
<td>Total</td>
<td>R_0</td>
<td>R_1</td>
<td>R_2</td>
<td>m</td>
</tr>
</tbody>
</table>

$FDR_{-1} = E[\frac{V_1 + W_1}{R_1}]$ \quad $FDR_{+1} = E[\frac{V_2 + W_2}{R_2}]$

$pFDR_{-1} = E[\frac{V_1 + W_1}{R_1} | R_1 > 0] \quad pFDR_{+1} = E[\frac{V_2 + W_2}{R_2} | R_2 > 0] \quad (Storey, 2003 \ AS)$

Pre-ICM Int. Convention, 2008
Theorem 2: Suppose that m hypothesis tests are based on test statistics T_1, T_2, \ldots, T_m. Let Γ_{-1} and Γ_1 be the regions of accepting H_{i-1} and H_i, respectively, for each $i=1,2,\ldots,m$.

Assume that $T_i|H^i \sim I(H^i_{-1})F_{-1}+I(H^i_0)F_0+I(H^i_1)F_1$, where F_{-1}, F_0, F_1 are the marginal distributions of T_i wrt π_{-1}, π_0 and π_1 respectively. If $(H^i_{-1}, H^i_0, H^i_1), i=1,2,\ldots,m$ are independent and identical trinomial trials, then

$$pFDR_{-1}(\Gamma) = P(H_0|T \in \Gamma_{-1}) + P(H_1|T \in \Gamma_{-1})$$

and

$$pFDR_{+1}(\Gamma) = P(H_0|T \in \Gamma_1) + P(H_{-1}|T \in \Gamma_1)$$
This theorem and our previous discussion on the Bayes decision rule implies that under the independent hypotheses testing setting, the Bayes rule obtained from a single test problem

\[H_0 : \theta = 0 \text{ vs. } H_{-1} : \theta < 0, \quad H_1 : \theta > 0, \]

Which minimizes the average expected false discoveries, can be used under multiple hypotheses problem. The false discovery rates of this procedure can be obtained by computing the posterior probabilities.

\[
pFDR_{-1}(\delta_B) = P(H_0 | \delta_B = -1) + P(H_1 | \delta_B = -1) \]

\[
pFDR_{+1}(\delta_B) = P(H_0 | \delta_B = 1) + P(H_{-1} | \delta_B = 1) \]

The prior probabilities \(p_{-1} \) and \(p_1 \) will determine whether the positive hypothesis \(H_1 \) or the negative hypothesis \(H_{-1} \) will be more frequently correctly detected.
Posterior False Discovery Rate

\[
PFDR_{-1} = E \left[\frac{\sum_{i=1}^{m} I(\theta_i \geq 0) I(d_i = -1)}{\sum_{i=1}^{m} I(d_i = -1) \lor 1} \mid X \right]
\]

\[
= \sum_{i=1}^{m} P(\theta_i \geq 0 \mid X) I(d_i = -1)
\]

\[
= \sum_{i=1}^{m} \frac{I(d_i = -1) \lor 1}{I(d_i = -1) \lor 1}
\]

Thus if \(P(\theta_i \geq 0 \mid X) \leq \alpha_{-1}, \) then \(E[PFDR_{-1}] \leq \alpha_{-1}. \)

Similarly, if \(P(\theta_i \leq 0 \mid X) \leq \alpha_{1}, \) then \(E[PFDR_{1}] \leq \alpha_{1}. \)
Let

\[q_i^-(X) = P(\theta_i \geq 0 \mid X) \]

\[q_i^+(X) = P(\theta_i \leq 0 \mid X) \]

\[q_{1,m}^+ \leq q_{2,m}^- \leq \ldots \leq q_{m,m}^- \]

\[q_{1,m}^- \leq q_{2,m}^+ \leq \ldots \leq q_{m,m}^+ \]

\[Q_j^-(X) = \frac{1}{j} \sum_{i=1}^{j} q_{i,1}^- \quad Q_j^+ = \frac{1}{j} \sum_{i=1}^{j} q_{i,1}^+ \]
Theorem 3: Let

\[k_-(X) = \begin{cases} \max\{ j : Q_j^-(X) \leq \alpha_- \}, & \text{if maximum exists} \\ 0, & \text{otherwise} \end{cases} \]

\[k_+(X) = \begin{cases} \max\{ j : Q_j^+(X) \leq \alpha_+ \}, & \text{if maximum exists} \\ 0, & \text{otherwise} \end{cases} \]

Select all \(H_{-1}^j \) corresponding to \(q_{-1,1} \leq \ldots \leq q_{k_-,m}. \)

Select all \(H_{1}^j \) corresponding to \(q_{1,1}^+ \leq \ldots \leq q_{k_+,m}. \)

Then \(E[PFDR_-] \leq \alpha_- \) and \(E[PFDR_+] \leq \alpha_2. \)
Computation of Bayes Rule:

$$\delta^B(\pi) = \{i \in (-1,0,1) : \min_{j=1,0,1} E[L(\theta,i) \mid X] \}$$

$$\pi(\theta \mid X) = \pi(H_{-1} \mid X) \pi(\theta \mid H_{-1}, X) + \pi(H_0 \mid X) I(\theta = 0) + \pi(H_1 \mid X) \pi(\theta \mid H_1, X)$$

Here $\pi(H_{-1} \mid X)$, $\pi(H_0 \mid X)$, and $\pi(H_1 \mid X)$ are the posterior probabilities of H_{-1}, H_0, and H_1 respectively; and $\pi(\theta \mid H_{-1}, X)$ and $\pi(\theta \mid H_1, X)$ are the posterior densities of θ under $\pi_{-1}(\theta)$ and $\pi_1(\theta)$ respectively.

Computation parts involve computing $\pi(H_{-1} \mid X)$, $\pi(H_0 \mid X)$, and $\pi(H_1 \mid X)$ and computing $E[L(\theta,-1) \mid H_1, X]$ and $E[L(\theta,1) \mid H_{-1}, X]$.
Choice of the loss function:

\[
L(\theta,0) = \begin{cases}
0 & \theta = 0 \\
q(\theta) & \theta \neq 0
\end{cases}, \quad L(\theta,-1) = \begin{cases}
0 & \theta < 0 \\
q_{-1}(\theta) & \theta \geq 0
\end{cases}, \quad L(\theta,+1) = \begin{cases}
0 & \theta > 0 \\
q_{1}(\theta) & \theta \leq 0
\end{cases}
\]

For the "0-1" loss, \(q_0(\theta) = q_{-1}(\theta) = q_{1}(\theta) = 1 \).

A good choice would be

\[
q_0(\theta) = l_0(1+q(\theta)), \quad q_{-1}(\theta) = l_{-1}(1+q(\theta)), \quad q_{1}(\theta) = l_1(1+q(\theta))
\]

where \(l_0, l_{-1} \) and \(l_1 \) are some non-negative constants.

Here, \(q(\theta) \) reflect the magnitude of departure from the null. One good choice of \(q(\theta) \) is

\[
q(\theta) = E_\theta[\log(f(X,0)/f(X,\theta))]
\]
If $q(\theta) = q_{-1}(\theta) = q_1(\theta) = 1$, then we have a "0-1" loss.

Theorem 3: Under the "0-1" loss, the Bayes rule is given by

$$
\delta^B = \{i: \ p_i f(X|H_i) = \max(p_j f(X|H_j), j=-1,0,1) \}
$$

Here $f(X|H_j)$ is the marginal density X under H_j.

In other words, reject H_0 if

$$
\frac{f(X|H_0)}{f(X|H_{-1})} < \frac{p_{-1}}{p_0} \quad \text{and} \quad \frac{f(X|H_0)}{f(X|H_1)} < \frac{p_1}{p_0}
$$

Otherwise, select $H_{-1}(H_1)$ if

$$
p_{-1} f(X|H_{-1}) > (<) \ p_1 f(X|H_1)
$$

Pre-ICM Int. Convention, 2008
Example:

Probability Model: \(N(\theta, 1) \)

\[
H_0: \theta = 0 \quad \text{vs.} \quad H_{-1}: \theta < 0, \quad H_1: \theta > 0
\]

Prior: \(\pi(\theta) = p_{-1}\pi_{-1}(\theta) + p_0 I(\theta = 0) + p_1\pi_1(\theta) \)

\(\pi_{-1} \): left-half \(N(0, 1) \) distribution

\(\pi_1 \): right-half \(N(0, 1) \) distribution
Theorem 4: Under the "0-1" loss, the Bayes rule reject H_0 if

$$T_{-1}(\bar{x}) > p_0/p_{-1} \quad \text{and} \quad T_1(\bar{x}) > p_0/p_1,$$

otherwise select $H_{-1}(H_1)$ if $p_{-1}T_{-1}(\bar{x}) > (<) p_1T_1(\bar{x})$, where

$$T_{-1}(x) = \frac{2}{\sqrt{n+1}} \exp\left(\frac{n^2x^2}{2(n+1)}\right)\Phi\left(-\frac{nx}{\sqrt{n+1}}\right)$$

and

$$T_1(x) = \frac{2}{\sqrt{n+1}} \exp\left(\frac{n^2x^2}{2(n+1)}\right)\Phi\left(-\frac{nx}{\sqrt{n+1}}\right)$$

Note that T_{-1} and T_1 are monotonically decreasing and increasing functions, respectively. Thus the rejection region is equivalent to

$$\bar{x} < T_{-1}^{-1}(p_0/p_{-1}) \quad \text{and} \quad \bar{x} > T_1^{-1}(p_0/p_1)$$

Pre-ICM Int. Convention, 2008
Power Comparison:

When $p_{-1} = p_1$, the rejection region is UMP unbiased.

Bayes test with $p_{-1} = 0.39$, $p_0 = 0.39$, $p_1 = 0.22$: blue line
UMP unbiased test: red dotted line
Bayes test with $p_{-1} = 0.22$, $p_0 = 0.39$, $p_1 = 0.39$: blue line
UMP unbiased test: red dotted line

Pre-ICM Int. Convention, 2008
What if \(p_{-1}, p_0, \) and \(p_1 \) are unknown?

One can consider a Dirichlet prior. It is easy to see that the only difference would be to replace \(p_{-1}, p_0, \) and \(p_1 \) by \(E(p_{-1}|X), E(p_0|X), \) and \(E(p_1|X) \) respectively.

For the normal problem, we get the following result.

Theorem 5: Under the "0-1" loss, the Bayes rule reject \(H_0 \) if

\[
T_{-1}(\bar{x}) > \frac{E(p_0|X)}{E(p_{-1}|X)} \quad \text{and} \quad T_1(\bar{x}) > \frac{E(p_0|X)}{E(p_1|X)},
\]

otherwise select \(H_{-1}(H_1) \) if \(E(p_{-1}|X)T_{-1}(\bar{x}) > (<) E(p_1|X)T_1(\bar{x}) \), where
Another Approach:

Consider the prior

$$\pi(\theta) = p_0 I(\theta = 0) + (1 - p_0)\pi'(\theta),$$

where $\pi'(\theta)$ is a skewed prior; for example, skew-normal

$$\pi'(\theta) = \frac{2}{\tau} \phi \left(\frac{\theta}{\tau} \right) \Phi \left(\frac{\lambda}{\tau} \right) I(\theta \neq 0).$$

Here λ reflects the skewness in θ values, and τ the dispersion in θ values.
Power Comparison of a skew-normal Bayes with the UMP test