1

Given $f(n) = 4n \lg n + n$ and $g(n) = \frac{n^2 - n}{2}$, determine which one is true: $f(n) \in O(\) or $g(n) \in O(f(n))$.

2

Given $f(n) = n + n\sqrt{n}$ and $g(n) = 4n \lg (n^2 + 1)$, determine which one is true: $f(n) \in O(\) or $f(n) \in \Omega(\) or $f(n) \in \Theta(\).

3

The range of a finite nonempty set of n real numbers S is defined as the difference between the largest and smallest elements of S. For each representation of S given below, describe in English an algorithm to compute the range. Indicate the time efficiency classes of these algorithms using the most appropriate notation (O, Θ, or Ω).

1. An unsorted array
2. A sorted array
3. An array which is a concatenation of two sorted portions.
4. A sorted singly linked list
5. A binary search tree
What is the value returned by the following algorithm? Express your answer as a function of \(n \). Give, using \(O \)-notation, the worst-case running time. [Hint: You could verify whether your answer is correct by writing a program that implements this algorithm and see what \(n \) gives what \(r \).]

Algorithm 1: Secret\((n)\)
\[
\begin{aligned}
 & r \gets 0 \\
 & \text{for } i \gets 1 \text{ to } n \text{ do} \\
 & \quad \text{for } j \gets i + 1 \text{ to } n \text{ do} \\
 & \quad \quad \text{for } k \gets i + j - 1 \text{ to } n \text{ do} \\
 & \quad \quad \quad r \gets r + 1 \\
 & \quad \end{aligned}
\]
return \(r \)

5
Design a recursive algorithm for computing \(2^n \) for any nonnegative integer \(n \) that is based on the formula \(2^n = 2^{n-1} + 2^{n-1} \). Set up a recurrence relation for the number of additions made by the algorithm and solve it. Draw a tree of recursive calls for this algorithm and count the number of calls made by the algorithm. Is it a good algorithm for solving this problem?

6 Bonus!
Prove that the recurrence relation in the pizza problem is correct (On slide #55 of Chapter 2 slides).