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An Ancient Chinese Say … 

 You are not “grown-ups” till you reach the age of 30.

 You are not “free from doubts” till the age of 40.

 You do not know God’s Will till the age of 50.

 The bottom line:

Learning is a life-long process
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Graphical Problem Statement 

 Can we automatically characterize these sequences 
(temporal patterns)?

 Can we use such temporal patterns for prediction?
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Temporal Pattern
 Find temporal patterns

 p PQ, a vector of length Q
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Events
 Temporal patterns that characterize and predict events

 Chosen a priori
 Algorithm not restricted by event definition

 Event definition is problem specific

Time instances with 
high event value
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Time Series Analysis Literature
 Box-Jenkins, ARMA

 Pandit and Wu (1983)

 Bowerman and O’Connell (1993)

 Chaotic deterministic
 Takens (1981)

 Sauer (1991)

 Casdagli (1989)

 Abarbanel (1990, 1994)

 Ghoshray (1996)
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An Innovative Approach
 Time Series Data Mining

 Time Series,

 Find temporal patterns that are characteristic and predictive of an event

 Nonstationary, non-periodic time series

 Chaotic deterministic time series whose attractors are non-stationary

 Local model, local prediction
 Not concerned with characterizing and predicting everywhere (every time)

 Characterize and predict events

 Applying Genetic Algorithm (GA) to find the “optimal” 
local model

 Exciting, new results with difficult real world time 
series

 X x t Nt , , ,1 

p   P Q

 g xt
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Introduction to Data Mining
 A step in the knowledge discovery process

 Application of algorithms to extract meaningful
patterns
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Data Mining and Knowledge Discovery
 "The nontrivial extraction of implicit, previously 

unknown, and potentially useful information from 
data"[1] 

 Uses artificial intelligence, statistical and visualization 
techniques to discover and present knowledge in a form 
which is easily comprehensible to humans. 

[1] W. Frawley and G. Piatetsky-Shapiro and C. Matheus, Knowledge 
Discovery in Databases: An Overview. AI Magazine, Fall 1992, pgs 
213-228.
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Data Mining and Knowledge Discovery
More recently (already obsolete):

 “The huge amount of tracking data available from web 
sites as an "information gold mine.”

 Business Week 

 “74% of large companies expect to mine web data to 
increase profits by 2002.”

 Forrester Research (1998)
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Popular Data Mining Problems
 Associating – Identifies patterns or groups of items

“men who buy red ties also often buy cigars.”

 Classifying – Identifies clusters of items with common 
attributes

“men who buy red ties and cigars also usually have wine 
at lunch and pay by credit card. ”
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 Sequencing – Identifies the order of events
“ men tend to buy red ties before lunch and cigars after 
lunch.”

 Predictive Modeling – Identifies a likely outcome from 
item clusters. 
“men who buy red ties and cigars and have wine at lunch 
are very likely to buy a silver Benz within two years and 
finance their purchase by borrowing money from bank”

Popular Data Mining Problems
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 Where do prospectors search for the gold?
 Geological formation

 Quartz and ironstone
 Structures such as banded iron formations

 Data Mining
 Define formations that point to nuggets of information
 Define patterns that identify an information strike

 Definition of “gold”
 For Gold Mining

 Size of nuggets makes a difference
 Mining for oil or silver is different

 Data Mining
 Definition of knowledge
 Clearly define the desired nuggets of information

Gold Mining Analogy
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Features of Data Mining
 Intend to discover knowledge which are previously 

unknown

 A Multi-disciplinary field growing out of many areas
 Mathematical modeling and statistics

 Pattern recognition

 Computational intelligence

11/4/2013 18

Data Mining Tools
 Traditional pattern recognition algorithms:

 Statistics, Mathematical Modeling, Algorithms. 
 Data Visualization, Graphics

 Intelligent computing:
 Artificial Neural networks, Fuzzy Logic, Genetic Algorithms/Evolutionary 

Computing, Expert Systems, Natural Language Processing, etc.

They all use “mechanical” computing power:
 Database Systems; Client-Server; Internet/WWW;

Software/programming; etc.
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Chaotic Deterministic Time Series
 No universal definition

 Characterized by the following criteria
 Sensitivity to initial conditions

 Positive Lyapunov exponent

 Broadband Fourier spectra

 Finite, possibly fractional attractors
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Attractors
 Given a manifold M and a map f: M  M, an invariant 

set S is defined as follows

 A positively invariant set requires that n  0. 

 A set A  M is an attracting set if A is a closed invariant 
set and there exists a neighborhood U of A such that U
is a positively invariant set and

 An attractor is defined as an attracting set that 
contains a dense orbit.
N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to 

Nonlinear Dynamics and Chaos. Redwood City, CA: Addison-Wesley, 
1992.

  S x x S f x S n Mn    0 0 0: , ,

 f x A x Un       
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Gold Mining Analogy
 Where do prospectors search for the gold?

 Geological formations
 Quartz and ironstone

 Structures such as banded iron formations

 Data Mining
 Define formations that point to nuggets of information (events) 

 Define temporal patterns that identify an information strike.

 Definition of gold
 Size of nuggets makes a difference in how the mining is approached.

 Mining for oil or silver is different

 Data Mining
 Definition of knowledge

 Clearly define the desired nuggets of information (events)

 Define event function g(xt)
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Two ideas arise from the analogy
 Patterns (Temporal Patterns)

 Patterns that guide and direct to the nuggets of information need to be 
understood and identified

 Temporal patterns and time series embedding

 Gold (Events)
 Nuggets of information require clear definition

 Time series events

 Relationship between a temporal pattern and event
 Find “temporal patterns” that indicate a high event value

 Example
 A sequence of charge flow values in the brain that precede a physical response

 A series of voltage values that precede the release of a droplet of metal from a 
welder

 A sequence of stock prices that precede a rapid increase in the stock price
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Algorithm
 Search for the optimal temporal pattern that yields the 

maximal “event” values

 Choose the support, Q, of the temporal pattern p

 Define the event function, g

 Embed the time series into a phase space
 Define a metric to allow comparison between the temporal pattern and 

embedded time series

 Find the “optimal” pattern cluster
 Pattern neighborhood that contains the maximum average “eventness”

 Genetic Algorithm
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Graphical Mapping
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Phase Space with Event Values
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Mathematical Formulation I
 Non-stationary training time series

 N is the length of the series

 Testing time series

 Define Event Function
 Inputs must chosen carefully

 Relationship to temporal pattern is important

 Example g
 The percentage change in the time series between times t+Q and t+Q+1

 Q is the length of the temporal pattern

 g x
x x

xt
t Q t Q

t Q


  

 

1

1

 X x t Nt , , ,1 

 Y x t R S R Nt  , , , ,
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Mathematical Formulation II
 Define P Q

 A Q dimensional real space 

 Phase space

 Embed X into P, likewise for Y create yt
 Subsets, xt, of X of cardinality Q

 Chosen by any consistent rule

 Define metric d for P
 d(p, xt)

 Compare the embedded time series and the temporal pattern

 p - temporal pattern, a vector of length Q

 xt - embedded time series

 x t
T

t t t Qx x x t N
Q

    
, , , , , ,  

1 1
1 1       

  1 2 1    Q
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Property 1
 Find a temporal pattern p P and a threshold 

that have the following two properties

 Property 1
 Given the following definitions

 That   

 and the set

is statistically different from the set 

  M t d t Ntrain t Q    : , , , ,p x        1 1

    M
train

t
t M

train

train
c M

g x

1

  X t
t

N Q

N Q
g x
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  g x t Mt train: 

  g x t N Qt : , ,  1 1
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Property 2
 Property 2

 Given the following definitions

 That   

 and that the set

 is statistically different from the set 

  M t d t R Stest t Q    : , , , ,p y         1

    M
test

t
t M

test

test
c M

g x

1

  Y t
t R

S Q

S Q R
g x
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  g x t R S Qt : , ,   1
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 Define threshold 
 In terms of normalized threshold d

 Use the mean and standard deviation statistics of d(p, xt)

 Optimization formulation
 Constraint forces cluster to be greater than 1 in size

  





d
Q

t d
t

N

N
d

Q

2

1

2

1

1 1





 

 

 p x,

 




d
Q

t
t

N

N
d

Q


  

 

1

1 1

1

p x,

Mathematical Formulation III
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Algorithm Results

Training time 
series
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Time Series View of Results
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Test Series Phase Space
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Testing Phase Space
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Time Series View of Testing
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Applications
 Set of progressively more complex time series

 Show how each is embedded into the phase space

 Show results of algorithm

 Constant

 Sinusoidal

 Chirp

 Random noise

 Engineering Application
 Welding Time Series

 Financial Application
 Stock Open Price
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Progression of Time Series
 Choose the support of the pattern, Q = 2, to allow 

graphical presentation

 Define the gold function
 The t+Qth value in the time series

 Q is the length of the pattern

   g x B xt
Q

t  1
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Constant Train Phase Space
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Constant Test Phase Space
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Noisy Sinusoidal Train Phase 
Space
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Noisy Sinusoidal Test Phase 
Space
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Noise Train Phase Space
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Noise Test Phase Space
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Constant Pattern Cluster
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Linearly Increasing Pattern Cluster
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Sinusoidal Pattern Cluster
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Time Series View of Sinusoidal

Testing portion of time 
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Sinusoidal Statistical Tests
 Runs Test

 H0: There is no difference between the matched time series and the whole 
time series.

 HA: There is significant difference between the matched time series and 
the whole time series.

 Using a 1% probability of Type I error ( = 0.01).

  = 1.87e-018 which means the null hypothesis can easily be rejected.

 Difference of two independent means
 Although the two populations are probably dependent, this can be ignored 

because it makes the statistics more conservative, i.e., it will tend to 
overestimate the Type I error. 

 H0: M - g(X) = 0.

 HA: M - g(X) > 0.

 Using a 1% probability of Type I error ( = 0.01). 

  = 5.179741e-043 shows that the null hypothesis can be rejected.
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Chirp Pattern Cluster
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Time Series View of Chirp
Testing portion of time 

series
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Noisy Sinusoidal Pattern Cluster
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Time Series View of Noisy 
Sinusoidal 
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Noise Pattern Cluster
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Welding Application
 Welding Process

 Two pieces of metal joined into one by 
making a joint between them

 Arcing current is created between welder and 
metal to be joined

 Wire is pushed out of welder

 Tip of wire melts, forming a droplet of metal 
that elongates (sticks out) until it releases

 Goal: Predict when droplet will release
 Can’t be done by traditional methods
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Welding Data Set
 Goal: Predict when a droplet will release

 Four time series
 Release (event), 1kHz sampling rate (~5000 data points)

 Stickout, 1kHz sampling rate (~5000 data points)

 Current, 5kHz sampling rate (~35,000 data points)

 Voltage, 5kHz sampling rate (~35,000 data points)

 Data not originally synchronized

 First Pass
 Used release time series as event function

 Used stickout as time series
 “not too reliable”

 Used a set of phase spaces (Q) from dimension 1 to 16

 Generated 16 temporal patterns
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Welding Time Series
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Welding Initial Results
 Training Set

 Runs  = 0

 Means  = 3.02 x 10-49

 true positives: 125 (5.6%), false positives: 99 (4.4%)

 true negatives: 2005 (89.3%), false negatives: 17 (0.8%)

 94.8% accuracy

 Testing Set
 Runs  = 0

 Means  = 1.34 x 10-51

 true positives: 97 (3.5%), false positives: 52 (1.9%)

 true negatives: 2470 (89.1%), false negatives: 55 (2.0%)

 95.1% accuracy
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Statistical Tests
 Runs Test

 H0: There is no difference between the matched time series and the whole 
time series.

 HA: There is significant difference between the matched time series and 
the whole time series.

 Using a 1% probability of Type I error ( = 0.01).

 Difference of two independent means
 Although the two populations are probably dependent, this can be ignored 

because it makes the statistics more conservative, i.e., it will tend to 
overestimate the Type I error. 

 H0: M - g(X) = 0.

 HA: M - g(X) > 0.

 Using a 1% probability of Type I error ( = 0.01). 
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ICN Time Series
 ICN is a pharmaceutical company whose stock trades 

on the NYSE

 Training Time Series
 Daily open price for 1st 126 trading days of 1990

 Testing Time Series
 Daily open price for the 2nd 127 trading days of 1990

 Stock prices tend to grow exponentially
 A filter is applied to the time series

 
Z z

B

B
xt t 









1



Richard J. Povinelli, Doctoral Oral Examination

Page 35, 3/9/99

11/4/2013 69

ICN Train Phase Space
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ICN Test Phase Space
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Time Series View of ICN
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ICN Initial Results
 Training Set

 Using Buy and Hold Strategy: -26.2% (125 days)

 Using Temporal Patterns: 51.0% (8 days)

 Runs  = 2.21 x 10-3

 Means  = 2.42 x 10-2

 Testing Set
 Using Buy and Hold Strategy: -24.1% (126 days)

 Using Temporal Patterns: 17.3% (22 days)

 Runs  = 3.63 x 10-3

 Means  = 2.54 x 10-1
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Presentation Status

 Problem Statement
 Graphical Problem Statement

 Time Series Analysis Literature

 Innovative New Approach

 Algorithm
 Phase Space

 Mathematical Formulation

 Algorithm Results

 Applications
 Progression of Time Series

 Engineering

 Financial
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