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An Ancient Chinese Say … 

 You are not “grown-ups” till you reach the age of 30.

 You are not “free from doubts” till the age of 40.

 You do not know God’s Will till the age of 50.

 The bottom line:

Learning is a life-long process
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Graphical Problem Statement 

 Can we automatically characterize these sequences 
(temporal patterns)?

 Can we use such temporal patterns for prediction?
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Temporal Pattern
 Find temporal patterns

 p PQ, a vector of length Q

-

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

t

x

temporal pattern
Q = 5



Richard J. Povinelli, Doctoral Oral Examination

Page 4, 3/9/99

11/4/2013 7

Events
 Temporal patterns that characterize and predict events

 Chosen a priori
 Algorithm not restricted by event definition

 Event definition is problem specific

Time instances with 
high event value
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Time Series Analysis Literature
 Box-Jenkins, ARMA

 Pandit and Wu (1983)

 Bowerman and O’Connell (1993)

 Chaotic deterministic
 Takens (1981)

 Sauer (1991)

 Casdagli (1989)

 Abarbanel (1990, 1994)

 Ghoshray (1996)
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An Innovative Approach
 Time Series Data Mining

 Time Series,

 Find temporal patterns that are characteristic and predictive of an event

 Nonstationary, non-periodic time series

 Chaotic deterministic time series whose attractors are non-stationary

 Local model, local prediction
 Not concerned with characterizing and predicting everywhere (every time)

 Characterize and predict events

 Applying Genetic Algorithm (GA) to find the “optimal” 
local model

 Exciting, new results with difficult real world time 
series

 X x t Nt , , ,1 

p   P Q

 g xt
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Introduction to Data Mining
 A step in the knowledge discovery process

 Application of algorithms to extract meaningful
patterns
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Data Mining and Knowledge Discovery
 "The nontrivial extraction of implicit, previously 

unknown, and potentially useful information from 
data"[1] 

 Uses artificial intelligence, statistical and visualization 
techniques to discover and present knowledge in a form 
which is easily comprehensible to humans. 

[1] W. Frawley and G. Piatetsky-Shapiro and C. Matheus, Knowledge 
Discovery in Databases: An Overview. AI Magazine, Fall 1992, pgs 
213-228.
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Data Mining and Knowledge Discovery
More recently (already obsolete):

 “The huge amount of tracking data available from web 
sites as an "information gold mine.”

 Business Week 

 “74% of large companies expect to mine web data to 
increase profits by 2002.”

 Forrester Research (1998)
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Popular Data Mining Problems
 Associating – Identifies patterns or groups of items

“men who buy red ties also often buy cigars.”

 Classifying – Identifies clusters of items with common 
attributes

“men who buy red ties and cigars also usually have wine 
at lunch and pay by credit card. ”

11/4/2013 14

 Sequencing – Identifies the order of events
“ men tend to buy red ties before lunch and cigars after 
lunch.”

 Predictive Modeling – Identifies a likely outcome from 
item clusters. 
“men who buy red ties and cigars and have wine at lunch 
are very likely to buy a silver Benz within two years and 
finance their purchase by borrowing money from bank”

Popular Data Mining Problems
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 Where do prospectors search for the gold?
 Geological formation

 Quartz and ironstone
 Structures such as banded iron formations

 Data Mining
 Define formations that point to nuggets of information
 Define patterns that identify an information strike

 Definition of “gold”
 For Gold Mining

 Size of nuggets makes a difference
 Mining for oil or silver is different

 Data Mining
 Definition of knowledge
 Clearly define the desired nuggets of information

Gold Mining Analogy
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Features of Data Mining
 Intend to discover knowledge which are previously 

unknown

 A Multi-disciplinary field growing out of many areas
 Mathematical modeling and statistics

 Pattern recognition

 Computational intelligence

11/4/2013 18

Data Mining Tools
 Traditional pattern recognition algorithms:

 Statistics, Mathematical Modeling, Algorithms. 
 Data Visualization, Graphics

 Intelligent computing:
 Artificial Neural networks, Fuzzy Logic, Genetic Algorithms/Evolutionary 

Computing, Expert Systems, Natural Language Processing, etc.

They all use “mechanical” computing power:
 Database Systems; Client-Server; Internet/WWW;

Software/programming; etc.
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Chaotic Deterministic Time Series
 No universal definition

 Characterized by the following criteria
 Sensitivity to initial conditions

 Positive Lyapunov exponent

 Broadband Fourier spectra

 Finite, possibly fractional attractors

11/4/2013 20

Attractors
 Given a manifold M and a map f: M  M, an invariant 

set S is defined as follows

 A positively invariant set requires that n  0. 

 A set A  M is an attracting set if A is a closed invariant 
set and there exists a neighborhood U of A such that U
is a positively invariant set and

 An attractor is defined as an attracting set that 
contains a dense orbit.
N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to 

Nonlinear Dynamics and Chaos. Redwood City, CA: Addison-Wesley, 
1992.

  S x x S f x S n Mn    0 0 0: , ,

 f x A x Un       
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Gold Mining Analogy
 Where do prospectors search for the gold?

 Geological formations
 Quartz and ironstone

 Structures such as banded iron formations

 Data Mining
 Define formations that point to nuggets of information (events) 

 Define temporal patterns that identify an information strike.

 Definition of gold
 Size of nuggets makes a difference in how the mining is approached.

 Mining for oil or silver is different

 Data Mining
 Definition of knowledge

 Clearly define the desired nuggets of information (events)

 Define event function g(xt)
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Two ideas arise from the analogy
 Patterns (Temporal Patterns)

 Patterns that guide and direct to the nuggets of information need to be 
understood and identified

 Temporal patterns and time series embedding

 Gold (Events)
 Nuggets of information require clear definition

 Time series events

 Relationship between a temporal pattern and event
 Find “temporal patterns” that indicate a high event value

 Example
 A sequence of charge flow values in the brain that precede a physical response

 A series of voltage values that precede the release of a droplet of metal from a 
welder

 A sequence of stock prices that precede a rapid increase in the stock price
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Presentation Status

 Problem Statement
 Graphical Problem Statement

 Time Series Analysis Literature

 Innovative New Approach

 Algorithm
 Phase Space

 Mathematical Formulation

 Algorithm Results

 Applications
 Progression of Time Series

 Engineering

 Financial
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Algorithm
 Search for the optimal temporal pattern that yields the 

maximal “event” values

 Choose the support, Q, of the temporal pattern p

 Define the event function, g

 Embed the time series into a phase space
 Define a metric to allow comparison between the temporal pattern and 

embedded time series

 Find the “optimal” pattern cluster
 Pattern neighborhood that contains the maximum average “eventness”

 Genetic Algorithm
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Graphical Mapping
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Phase Space with Event Values
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Mathematical Formulation I
 Non-stationary training time series

 N is the length of the series

 Testing time series

 Define Event Function
 Inputs must chosen carefully

 Relationship to temporal pattern is important

 Example g
 The percentage change in the time series between times t+Q and t+Q+1

 Q is the length of the temporal pattern

 g x
x x

xt
t Q t Q

t Q


  

 

1

1

 X x t Nt , , ,1 

 Y x t R S R Nt  , , , ,
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Mathematical Formulation II
 Define P Q

 A Q dimensional real space 

 Phase space

 Embed X into P, likewise for Y create yt
 Subsets, xt, of X of cardinality Q

 Chosen by any consistent rule

 Define metric d for P
 d(p, xt)

 Compare the embedded time series and the temporal pattern

 p - temporal pattern, a vector of length Q

 xt - embedded time series

 x t
T

t t t Qx x x t N
Q

    
, , , , , ,  

1 1
1 1       

  1 2 1    Q
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Property 1
 Find a temporal pattern p P and a threshold 

that have the following two properties

 Property 1
 Given the following definitions

 That   

 and the set

is statistically different from the set 

  M t d t Ntrain t Q    : , , , ,p x        1 1

    M
train

t
t M

train

train
c M

g x

1

  X t
t

N Q

N Q
g x

  

 

1

1 1

1

 M Xtrain


  g x t Mt train: 

  g x t N Qt : , ,  1 1
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Property 2
 Property 2

 Given the following definitions

 That   

 and that the set

 is statistically different from the set 

  M t d t R Stest t Q    : , , , ,p y         1

    M
test

t
t M

test

test
c M

g x

1

  Y t
t R

S Q

S Q R
g x

   

 

1

2

1

 M Ytest


  g x t Mt test: 
  g x t R S Qt : , ,   1
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 Define threshold 
 In terms of normalized threshold d

 Use the mean and standard deviation statistics of d(p, xt)

 Optimization formulation
 Constraint forces cluster to be greater than 1 in size

  





d
Q

t d
t
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N
d

Q
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 p x,

 



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t
t
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N
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Q


  

 

1
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p x,

Mathematical Formulation III

     
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Algorithm Results
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Time Series View of Results
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Test Series Phase Space
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Testing Phase Space
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Time Series View of Testing
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Presentation Status
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Applications
 Set of progressively more complex time series

 Show how each is embedded into the phase space

 Show results of algorithm

 Constant

 Sinusoidal

 Chirp

 Random noise

 Engineering Application
 Welding Time Series

 Financial Application
 Stock Open Price
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Progression of Time Series
 Choose the support of the pattern, Q = 2, to allow 

graphical presentation

 Define the gold function
 The t+Qth value in the time series

 Q is the length of the pattern

   g x B xt
Q

t  1
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Constant Train Phase Space
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Constant Test Phase Space
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Noisy Sinusoidal Train Phase 
Space
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Noisy Sinusoidal Test Phase 
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Noise Train Phase Space
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Noise Test Phase Space

Testing 
portion of 

time series

Q = 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 110 120 130 140 150 160 170 180 190 200
t

x t

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

x t

x t+1



Richard J. Povinelli, Doctoral Oral Examination

Page 27, 3/9/99

11/4/2013 53

Constant Pattern Cluster
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Linearly Increasing Pattern Cluster
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Sinusoidal Pattern Cluster
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Time Series View of Sinusoidal
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Sinusoidal Statistical Tests
 Runs Test

 H0: There is no difference between the matched time series and the whole 
time series.

 HA: There is significant difference between the matched time series and 
the whole time series.

 Using a 1% probability of Type I error ( = 0.01).

  = 1.87e-018 which means the null hypothesis can easily be rejected.

 Difference of two independent means
 Although the two populations are probably dependent, this can be ignored 

because it makes the statistics more conservative, i.e., it will tend to 
overestimate the Type I error. 

 H0: M - g(X) = 0.

 HA: M - g(X) > 0.

 Using a 1% probability of Type I error ( = 0.01). 

  = 5.179741e-043 shows that the null hypothesis can be rejected.
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Chirp Pattern Cluster
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Time Series View of Chirp
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Noisy Sinusoidal Pattern Cluster
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Time Series View of Noisy 
Sinusoidal 
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Noise Pattern Cluster
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Welding Application
 Welding Process

 Two pieces of metal joined into one by 
making a joint between them

 Arcing current is created between welder and 
metal to be joined

 Wire is pushed out of welder

 Tip of wire melts, forming a droplet of metal 
that elongates (sticks out) until it releases

 Goal: Predict when droplet will release
 Can’t be done by traditional methods
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Welding Data Set
 Goal: Predict when a droplet will release

 Four time series
 Release (event), 1kHz sampling rate (~5000 data points)

 Stickout, 1kHz sampling rate (~5000 data points)

 Current, 5kHz sampling rate (~35,000 data points)

 Voltage, 5kHz sampling rate (~35,000 data points)

 Data not originally synchronized

 First Pass
 Used release time series as event function

 Used stickout as time series
 “not too reliable”

 Used a set of phase spaces (Q) from dimension 1 to 16

 Generated 16 temporal patterns
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Welding Time Series
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Welding Initial Results
 Training Set

 Runs  = 0

 Means  = 3.02 x 10-49

 true positives: 125 (5.6%), false positives: 99 (4.4%)

 true negatives: 2005 (89.3%), false negatives: 17 (0.8%)

 94.8% accuracy

 Testing Set
 Runs  = 0

 Means  = 1.34 x 10-51

 true positives: 97 (3.5%), false positives: 52 (1.9%)

 true negatives: 2470 (89.1%), false negatives: 55 (2.0%)

 95.1% accuracy
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Statistical Tests
 Runs Test

 H0: There is no difference between the matched time series and the whole 
time series.

 HA: There is significant difference between the matched time series and 
the whole time series.

 Using a 1% probability of Type I error ( = 0.01).

 Difference of two independent means
 Although the two populations are probably dependent, this can be ignored 

because it makes the statistics more conservative, i.e., it will tend to 
overestimate the Type I error. 

 H0: M - g(X) = 0.

 HA: M - g(X) > 0.

 Using a 1% probability of Type I error ( = 0.01). 
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ICN Time Series
 ICN is a pharmaceutical company whose stock trades 

on the NYSE

 Training Time Series
 Daily open price for 1st 126 trading days of 1990

 Testing Time Series
 Daily open price for the 2nd 127 trading days of 1990

 Stock prices tend to grow exponentially
 A filter is applied to the time series

 
Z z

B

B
xt t 









1



Richard J. Povinelli, Doctoral Oral Examination

Page 35, 3/9/99

11/4/2013 69

ICN Train Phase Space
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ICN Test Phase Space
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Time Series View of ICN
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ICN Initial Results
 Training Set

 Using Buy and Hold Strategy: -26.2% (125 days)

 Using Temporal Patterns: 51.0% (8 days)

 Runs  = 2.21 x 10-3

 Means  = 2.42 x 10-2

 Testing Set
 Using Buy and Hold Strategy: -24.1% (126 days)

 Using Temporal Patterns: 17.3% (22 days)

 Runs  = 3.63 x 10-3

 Means  = 2.54 x 10-1
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Presentation Status

 Problem Statement
 Graphical Problem Statement

 Time Series Analysis Literature

 Innovative New Approach

 Algorithm
 Phase Space

 Mathematical Formulation

 Algorithm Results

 Applications
 Progression of Time Series

 Engineering

 Financial
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