Age-specific signatures of glioblastoma

Serdar Bozdag, Ph.D.
10/21/2013
Age-Specific Signatures of Glioblastoma at the Genomic, Genetic, and Epigenetic Levels

Serdar Bozdag1,2*, Aiguo Li1, Gregory Riddick1, Yuri Kotliarov1,3, Mehmet Baysan1, Fabio M. Iwamoto1,4, Margaret C. Cam1, Svetlana Kotliarova1, Howard A. Fine1,5

1 Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America, 2 Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America, 3 Center for Human Immunology, Autoimmunity and Inflammation, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 4 The Neurological Institute of New York, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America, 5 New York University Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America

Abstract

Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs.

http://www.mscs.mu.edu/~mehdi/seminar/
Motivation

• Glioblastoma multiforme (GBM) is most common malignant type of brain tumor
• GBM patients have a median survival of fourteen months
• Several international projects to generate “big data” to better characterize GBM biology
• It is well known that there is a significant survival difference between old and young GBM patients
• An important remaining questions is “what is the biology behind this survival difference between old and young GBMs”
Objective

• Obtain clinical, genomic, genetic, and epigenetic datasets of GBM patients
 – to verify
 • Age is an independent significant prognostic factor for survival
 – to find
 • Age specific signatures at the genomic, genetic, epigenetic levels
- Is there a significant survival difference between Old and Young independent of other factors?

- Is there a significant difference between Old and Young based on these datasets?
The Cancer Genome Atlas (TCGA) Project

https://tcga-data.nci.nih.gov/tcga/
Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

Roel G.W. Verhaak,1,5,7 Katherine A. Hoadley,2,4,17 Elizabeth Purdom,2 Victoria Wang,6 Yuan Qi,4,6 Matthew D. Wilkerson,5,6,7 C. Ryan Miller,2,4,17 Li Ding,2,3 Todd Golub,2,3 Joel P. Mesirov,1 Gabriele Alexe,1 Michael Lawrence,1,2 Michael O’Kelly,1 Pablo Tamayo,1 Barbara A. Weir,1,2,17 Stacey Gabriel,1 Wendy Winckler,1,2 Supriya Gupta,1 Lakshmi Jakkula,11 Heidi S. Feller,11 J. Graeme Hodgson,12 C. David James,12 Jann N. Sarkaria,12 Cameron Brennan,14 Ari Kahn,11 Paul T. Spellman,11 Richard K. Wilson,7 Terence P. Speed,7,10 Joe W. Gray,11 Matthew Meyerson,1,2 Gad Getz,1 Charles M. Perou,2,4,5 D. Neil Hayes,4,5,7 and The Cancer Genome Atlas Research Network

1The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
3Department of Genetics
4Department of Genome Biology, The Cancer Genome Atlas
Age trumps molecular subtypes to predict survival

<table>
<thead>
<tr>
<th>Source</th>
<th>L-R Chi-Square</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>36.8861622</td>
<td><.0001</td>
</tr>
<tr>
<td>Subtypes</td>
<td>3.13180449</td>
<td>0.3717</td>
</tr>
<tr>
<td>Subtypes*Age</td>
<td>1.57077625</td>
<td>0.666</td>
</tr>
</tbody>
</table>
Age trumps molecular subtypes to predict survival

![Graphs showing survival rates with age and molecular subtypes]
Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma

Houtan Noushmehr,1,13 Daniel J. Weisenberger,1,13 Kristin Diefes,2,13 Heidi S. Phillips,3 Kanan Pujara,3 Benjamin P. Berman,1 Fei Pan,1 Christopher E. Pelloski,6 Erik P. Sulman,4 Krishna P. Bhat,2 Roel G.W. Verhaak,5,6 Katherine A. Hoadley,7,8 D. Neil Hayes,7,8 Charles M. Perou,7,8 Heather K. Schmidt,9 Li Ding,9 Richard K. Wilson,9 David Van Den Berg,1 Hui Shen,1 Henrik Bengtsson,10 Pierre Neuvial,10 Leslie M. Cope,11 Jonathan Buckley,1,12 James G. Herman,11 Stephen B. Baylin,11 Peter W. Laird,1,14,7 Kenneth Aldape,2,14 and The Cancer Genome Atlas Research Network

SUMMARY

We have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds.
Age is an independent predictor of survival

<table>
<thead>
<tr>
<th>F</th>
<th>Hazard Ratio</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor grade</td>
<td>2.1</td>
<td><0.000001</td>
</tr>
<tr>
<td>Patient Age (in decades)</td>
<td>1.2</td>
<td>0.000026</td>
</tr>
<tr>
<td>G-CIMP status</td>
<td>0.4</td>
<td>0.000020</td>
</tr>
</tbody>
</table>

G-CIMP+ proneurals and G-CIMP- proneurals have different biology

G-CIMP+ samples are younger than G-CIMP- samples

We need to remove G-CIMP effect from sample set

- We would like to find age-specific changes at expression/methylation
- However, G-CIMP status affect changes at expression/methylation level
- We remove G-CIMP+ samples
G-CIMP+ vs. G-CIMP-
(PCA on methylation data)

- 281 samples in methylation data
- Probesets std. dev ≥ 0.2 selected
G-CIMP prediction from gene expression

- Expression profiles of samples with known G-CIMP status are used as training
- K-nearest algorithm with cross-validation applied
- Two gene expression datasets were used for prediction
- Consensus G-CIMP calls are saved
G-Cimp Status Prediction Of Glioblastoma Samples Using mRNA Expression Data

Mehmet Baysan¹, Serdar Bozdog², Margaret C. Cam¹, Svetlana Kotliarova¹, Susie Ahn¹, Jennifer Walling¹, Jonathan K. Killian³, Holly Stevenson³, Paul Meltzer³, Howard A. Fine¹,4*

¹ Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, ² Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America, ³ Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, ⁴ New York University Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America

Abstract
Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.
Age is significant factor of survival within G-CIMP- samples
Old vs. Young

- Gene expression
 - Agilent
 - Affymetrix
- Exon expression
- Methylation
- CNA
- Mutation
What is the definition of “old” and “young”
Number of sample per age group
Data set

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Platform</th>
<th>Level¹</th>
<th>Institute</th>
<th># Old²</th>
<th># Young³</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene expression</td>
<td>Affymetrix HT Human Genome U133 Array Plate Set</td>
<td>2</td>
<td>Broad Institute of MIT and Harvard</td>
<td>92</td>
<td>37</td>
<td>422</td>
</tr>
<tr>
<td>Exon expression</td>
<td>Affymetrix Human Exon 1.0 ST Array</td>
<td>3</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>80</td>
<td>34</td>
<td>382</td>
</tr>
<tr>
<td>Gene expression</td>
<td>Agilent 244K Custom Gene Expression G4502A</td>
<td>2</td>
<td>University of North Carolina</td>
<td>92</td>
<td>37</td>
<td>420</td>
</tr>
<tr>
<td>miRNA expression</td>
<td>Agilent 8×15K Human miRNA-specific microarray</td>
<td>3</td>
<td>University of North Carolina</td>
<td>80</td>
<td>34</td>
<td>385</td>
</tr>
<tr>
<td>Methylation</td>
<td>Illumina Infinium Human DNA Methylation 27</td>
<td>2</td>
<td>Johns Hopkins/University of Southern California</td>
<td>56</td>
<td>22</td>
<td>256</td>
</tr>
<tr>
<td>Copy Number</td>
<td>Agilent Human Genome CGH Microarray 244A</td>
<td>3</td>
<td>Memorial Sloan-Kettering Cancer Center</td>
<td>87</td>
<td>36</td>
<td>406</td>
</tr>
<tr>
<td>SNP</td>
<td>Affymetrix Genome-Wide Human SNP Array 6.0</td>
<td>3</td>
<td>Broad Institute of MIT and Harvard</td>
<td>88</td>
<td>32</td>
<td>390</td>
</tr>
<tr>
<td>SNP</td>
<td>Illumina 550K Infinium HumanHap550 SNP Chip</td>
<td>3</td>
<td>HudsonAlpha Institute for Biotechnology</td>
<td>78</td>
<td>33</td>
<td>376</td>
</tr>
<tr>
<td>Whole Exome</td>
<td>Illumina Genome Analyzer Ix</td>
<td>N/A</td>
<td>Broad Institute of MIT and Harvard</td>
<td>55</td>
<td>12</td>
<td>202</td>
</tr>
</tbody>
</table>

¹Level 2 refers to probed-set-level data and level 3 refers to gene-level data for expression and methylation data sets. Level 3 refers to segmented data for copy number and SNP data sets. There is no level number for whole exome sequence data set as we just used the mutations derived from this data set.

²Old and Young refer to samples ≥70 and ≤40 years old, respectively.
Computing age-specific significant differentially expressed genes (DEGs)

- Two methods have been applied
 - Two sample t-test (old vs. young)
 - Linear regression (SAM) where age is a continuous variable
DEGs

<table>
<thead>
<tr>
<th></th>
<th>T-test(^1)</th>
<th>Linear regression(^1)</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix HT HG U133A</td>
<td>630</td>
<td>1749</td>
<td>595</td>
</tr>
<tr>
<td>Affymetrix Human Exon 1.0 ST</td>
<td>62</td>
<td>91</td>
<td>40</td>
</tr>
<tr>
<td>Agilent 244K G4502A</td>
<td>348</td>
<td>909</td>
<td>313</td>
</tr>
<tr>
<td>Common (U133A and G4502A)</td>
<td>130</td>
<td>334</td>
<td>115</td>
</tr>
<tr>
<td>Common (all three platforms)(^2)</td>
<td>17</td>
<td>40</td>
<td>14</td>
</tr>
</tbody>
</table>

The last row shows the number of differentially expressed genes found in all three platforms.

\(^1\)In each test, FDR≤0.05 threshold is applied.

\(^2\)Shows the number of differentially expressed genes found in all three platforms.
Validation of DEGs on external data (REMBRANDT)

https://caintegrator.nci.nih.gov/rembrandt/home.do
Validation of DEGs on external dataset

REMBRANDT
TCGA DEGs

Old
Young

REMBRANDT
All genes

TCGA
TCGA DEGs
Motif analysis

- Motif Enrichment analysis using JASPAR motifs and the PSCAN algorithm for promoter regions -450bp to +50bp

<table>
<thead>
<tr>
<th>TF Motif</th>
<th>FDR(BH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egr1</td>
<td>0.0025</td>
</tr>
<tr>
<td>INSM1</td>
<td>0.0030</td>
</tr>
<tr>
<td>MZF1_1-4</td>
<td>0.0157</td>
</tr>
<tr>
<td>PLAG1</td>
<td>0.0157</td>
</tr>
<tr>
<td>CTCF</td>
<td>0.0226</td>
</tr>
<tr>
<td>TFAP2A</td>
<td>0.0241</td>
</tr>
<tr>
<td>Mycn</td>
<td>0.0241</td>
</tr>
<tr>
<td>SP1</td>
<td>0.0241</td>
</tr>
<tr>
<td>Myc</td>
<td>0.0284</td>
</tr>
<tr>
<td>HIF1A::ARNT</td>
<td>0.0437</td>
</tr>
</tbody>
</table>
Functional analysis of DEGs

- DAVID results
- enrichment in several GO terms such as “response to hypoxia” (p-value, 0.00123, enriched genes: VEGFA, SOD2, BNIP3, SLC11A2, EGLN3, PLOD2, NOL3, and ALDOC);
- “vasculo-genesis” (p-value, 0.088, enriched genes: VEGFA, NTRK2, and QKI)
- VEGFA is a gene that has role in angiogenesis. It is up-regulated in old GBMs.
TCGA miRNA Histogram
Differentially expressed miRNAs

- Ranked-based linear regression
- FDR < 0.05
Differentially expressed microRNAs

- 19 miRs, all downregulated in old
- 172 experimentally validated target genes (mirWalk database)
- 7 of them are upregulated in old
 - LOX, VEGFA, DDIT4L, BCL6, MAF, NR2F1, SOX2
TCGA Methylation Data

- Infinium HumanMethylation27 Platform by Illumina
- Each value in the data set: $M/(U+M)$ where M and U are the signal intensities for methylated and unmethylated bead types, respectively.
Histogram of beta values

Histogram of beta values for a sample set in TCGA
Differentially methylated genes (DMGs)

- Ranked-based linear regression is used to compute DMGs
- 389 age-specific DMGs were found
- 98% of them are hypermethylated in old
Distinct DNA methylation changes highly correlated with chronological age in the human brain

Dena G. Hernandez¹,³, Michael A. Nalls¹,†, J. Raphael Gibbs¹,³, Sampath Arepalli¹, Marcel van der Brug⁴, Sean Chong¹, Matthew Moore¹, Dan L. Longo², Mark R. Cookson¹, Bryan J. Traynor¹ and Andrew B. Singleton¹,*

¹Laboratory of Neurogenetics and ²Lymphocyte Cell Biology Unit, National Institute on Aging, Baltimore, MD, USA ³Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, UCL, Queen Square House, London WC1N 3BG, UK and ⁴Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, Jupiter, FL, USA

Received July 15, 2010; Revised December 7, 2010; Accepted December 26, 2010

Methylation at CpG sites is a critical epigenetic modification in mammals. Altered DNA methylation has been suggested to be a central mechanism in development, some disease processes and cellular senescence. Quantifying the extent and identity of epigenetic changes in the aging process is therefore potentially important for understanding longevity and age-related diseases. In the current study, we have examined DNA methylation at >27,000 CpG sites throughout the human genome, in frontal cortex, temporal cortex, pons and cerebellum from 387 human donors between the ages of 1 and 102 years. We identify CpG loci that show a highly significant, consistent correlation between DNA methylation and chronological age. The majority of these loci are within CpG islands and there is a positive correlation between age and DNA methylation level. Lastly, we show that the CpG sites where the DNA methylation level is significantly associated with age are physically close to genes involved in DNA binding and regulation of transcription. This suggests that specific age-related DNA methylation changes may have quite a broad impact on gene expression in the human brain.
Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain

J. Raphael Gibbs1,2,9, Marcel P. van der Brug1,3,9, Dena G. Hernandez1,2,9, Bryan J. Traynor1, Michael A. Nalls1, Shiao-Lin Lai1,2, Sampath Arepalli1, Allissa Dillman1, Ian P. Rafferty1, Juan Troncoso4, Robert Johnson5, H. Ronald Zielke5, Luigi Ferrucci6, Dan L. Longo7, Mark R. Cookson18, Andrew B. Singleton1*

1 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America, 2 Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, University College London, London, United Kingdom, 3 Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, Jupiter, Florida, United States of America, 4 Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America, 5 National Institute of Child Heath and Human Development Brain and Tissue Bank for Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland, United States of America, 6 Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America, 7 Lymphocyte Cell Biology Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America

Abstract

A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation.
Singleton Data

- All methylation and clinical data are available on NCBI GEO (GSE15745)
- About 130 patients
- Samples from four regions of the brain
- Total 506 samples
DMGs

• Hypermethylated genes with aging in normal brain were filtered out
• 184 of them are uniquely hypermethylation in older GBMs
• 18 of them (Fisher’s exact test p-value < 1.27e-05) are found to be associated in cancer through methylation
TCGA copy number alteration data
Differentially altered genes (DAGs)

- Comparison function (Nexus)
- q-value < 0.05
Age-specific CNA

<table>
<thead>
<tr>
<th></th>
<th>CNA (SNP6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>More frequently deleted in old</td>
<td>722</td>
</tr>
<tr>
<td>More frequently amplified in old</td>
<td>321</td>
</tr>
<tr>
<td>More frequently amplified in young</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1044</td>
</tr>
</tbody>
</table>

Eight hypermethylated genes in old (heterozygous deletion)

RASGEF1A C10orf47 **HHEX** PLCE1 FRMD4A SVIL ITGA8 PDLIM1
Hypothesis

Vasculogenic/angiogenic upregulation in old GBMs compared to young GBMs through inhibition of VEGF by HHEX
HHEX vs. VEGF
Scatterplot (Exon data)
Network of angiogenesis
Summary

• Age is an independent significant prognostic factor of survival in GBMs
• Older GBMs have higher activity of angiogenesis
• Treatments that inhibit angiogenesis work better in old GBMs
• Activity of angiogenesis in older GBMs might be through deletion or hypermethylation of HHEX