
Performance Benchmarking & Optimizing
Hyperledger Fabric Blockchain Platform

Parth Thakkar, Senthil Nathan N, Balaji Vishwanathan
IBM Research, India

1

Outline
• Background

• Blockchain & Hyperledger Fabric

• Motivation for performance benchmarking

• Experimentation methodology
• Performance metrics
• Parameters which Impact the Peer Components
• Setup and workload

• Results: Impact of various configurable parameters on the performance
• Guidelines on parameter configuration & Bottlenecks
• Research opportunities

• Optimizations (improved the overall throughput by 16x -- from 140 tps to 2250 tps)
1. Cache to minimize crypto operations
2. Parallel validation
3. Bulk read/write 2

Background
Blockchain & Hyperledger Fabric

3

Blockchain Defined

Blockchain is a design
pattern made famous by its
use in Bitcoin. But its uses go
far beyond.

Blockchain can reimagine the
world's most fundamental
business interactions and
open the door to invent new
styles of digital interactions.

4

A Business Network Without Blockchain

Without Blockchain: Inefficient, Expensive, Vulnerable, Conflicts

BankOrganization B

Organization C AuditorOrganization D

Organization A

Business-2-Business Transaction

Ledger Ledger Ledger

Ledger Ledger Ledger

5

With Blockchain: Consensus, Provenance, Immutability

Ledger: Shared, replicated, permissioned

A Business Network With Blockchain

BankOrganization B

Organization C AuditorOrganization D

Organization A

6

Hyperledger Fabric: Permissioned Blockchain Platform

P2

C

P0

P3

Org. B’s
Client
App

(1) Submit the Tx

Smart Contract

Consenters (or)
Ordering Service

Endorsing &
Committing Peer

Committing Peer

(2) Simulates the Tx

Consenters

P1

C
CC

(2) Simulates the Tx

(3) Simulation results & org B digital signature

(3) Simulation results & org A digital signature

Org. A

Org. B Org. C Org. D
(4) Tx’s Simulation Results & Endorsers Signature

(6) Delivers the Block

(6) Delivers the Block

(6) Delivers the Block

State DB

(7) Validation as per SC endorsement policy

(8) MVCC Validation & Commit

(7) Validation as per SC endorsement policy

(7) Validation as per SC
endorsement policy

(8) MVCC Validation & Commit

(8) MVCC Validation & Commit

(1) Submits the Tx
(2) Simulates the Tx
(3) Simulation results &

digital signature
(4) Submit results &

endorsers signatures
to consenter

(5) Consensus
(6) Delivers the block
(7) Policy validation
(8) MVCC & commit
(9) Send Tx’s status

(5) Consensus for creating a block with Txs

(9) Tx Status

Org. D’s
Client
App

Org. A’s
Client
App

Steps for Executing a Tx

A block is delivered when
(a) the timeout occurs or
(b) the block size limit is reached 7

Our Focus: Three Sub-Components in a Peer

1. Endorser
• Invoke the chaincode and simulate the transaction to collect read/write set
• Sign the transaction response using ESCC (endorser system chaincode code)

2. Validator: On receiving a block
• Validator validates all transactions in a block by invoking VSCC (validator system chaincode)
• Any two organization endorsement signature

• Or (And(A, B), And(A, C), And(A, D), And(B, C), And(B, D), And(C, D))

3. Committer & Ledger
• Committer calls the ledger to commit the received block
• Performs MVCC validation on read/write set of each transaction
• Commit the block to block storage and valid transactions to state/history DB

8

Motivation for Performance
Benchmarking

9

Motivation for Performance Benchmarking

1. To find out bottlenecks and gaps for improvement

2. To propose and implement optimizations to improve the performance
• blockchain solutions’ throughput requirement is between 100 tps and 20,000 tps (for RTGS)

3. To provide guidelines on parameters configurations
• 100s of questions on parameters configuration on Hyperledger Fabric mailing-list

4. To identify research opportunities
• A new research topic and a lot of potential for enhancement
• Increase research activities in Blockchain domain

10

Experimental Methodology
Performance Metrics, Parameters, Setup and Workload

11

Performance Metrics

• Transaction Throughput

• Transaction Latency

Transaction Latency
1. Endorsement Latency

Client – Endorser
2. Broadcast Latency

Client – Orderer
3. Ordering Latency

Orderer – Peer
4. Commit Latency

Peer – Client

Block-Level Latency
1. VSCC Validation Latency
2. MVCC Validation Latency
3. Ledger Update Latency

12

Parameters which Impact Peer Components

Parameters Endorsers Validator Committer &
Ledger

(1) Block Size ✓ ✓
(2) Endorsement Policy ✓
(3) Number of Channels ✓ ✓ ✓
(4) Resource Allocation ✓ ✓ ✓
(5) State DB Choice (CouchDB vs GolevelDB) ✓ ✓ ✓
(6) Transaction Size (number of keys read/write, size of key/value) ✓ ✓

13

Experimental Methodology

• Perform experiments by varying values set to configurable parameters to understand

1. Impact of various load generation rate and block size on the performance.

2. Impact of endorsement policy on the performance.

3. Impact of number of channels & resource allocation on the performance.

4. Impact of transaction size and state DB choice on the performance.

14

Setup & Workload

Peer 1 Peer 2

Org a
MSP

Peer 1 Peer 2

Org b

Peer 1 Peer 2

MSP
Peer 1 Peer 2

MSP
Org c Org d

MSP

OSN Kafka/Zookeeper

Datacenter
Network

Ordering Service

Built our own workload by surveying
around 12 internal customer solutions

Write-only transactions
• 1 KV write
• 3 KV writes
• 5 KV writes

Read-Write transactions
• 1 KV read write
• 3 KV reads writes
• 5 KV reads writes

Setup Workload

15

Results: Impact of various configurable
parameters on the performance
Guidelines, Bottlenecks, & Research Opportunities

16

(1) Impact of Transaction Arrival Rate & Block Size

 0

 20

 40

 60

 80

 100

 120

 140

25 50 75 100 125 150 175
 100

 1000

 10000

 100000
T

h
ro

u
g

h
p

u
t

(t
p

s
)

L
a

te
n

c
y

 (
m

s
e

c
)

Transaction Arrival Rate (tps)

Throughput (block size: 10)
Throughput (block size: 30)
Throughput (block size: 50)

Throughput (block size: 100)
Latency (block size: 10)
Latency (block size: 30)
Latency (block size: 50)

Latency (block size: 100)

Latency

Throughput

Saturation: 140 tps

Inc
re

as
ed

 w
ith

 bl
oc

k s
ize

17

(1) Impact of Transaction Arrival Rate & Block Size

• Guidelines on configuring the block size:
• transaction arrival rate < saturation point à lower block size
• transaction arrival rate >= saturation point à higher block size

• Bottleneck:
• CPU resources are under-utilized (~7% utilization) - Serial validation of transactions by VSCC

• Parallel validation has some challenges but could improve the performance

• Research opportunity:
• On higher transaction arrival rate, the latency increased by >10x
• Admission control for transactions is necessary to get lower latency

• very challenging in an untrusted and distributed system

18

(2) Impact of Endorsement Policy

And/Or
1 Endorser : Or (A, B, C, D)
2 Endorsers: Or (And(A, B), And(A, C), And(A, D), And(B, C), And(B, D), And(C, D))
3 Endorsers: Or (And(A, B, C), And(A, B, D), And(B, C, D), And(A, C, D))
4 Endorsers: And (A, B, C, D)

NOutOf
1 Endorser : 1-out-of (A, B, C, D)
2 Endorsers: 2-out-of (A, B, C, D)
3 Endorsers: 3-out-of (A, B, C, D)
4 Endorsers: 4-out-of (A, B, C, D)

• Guideline on configuring the endorsement policy
• To achieve higher performance, define endorsement policy with lesser #sub-policies and #endorsers

• NOutOf policy is better performant than And/Or but less powerful

19

(2) Impact of Endorsement Policy

• Bottleneck:
• Validation of endorsers signature against the policy

• Repetitive crypto operation -- usage of cache could improve the performance

• Research opportunity:
• Matching digital signature set against the endorsement policy is a NP complete problem

• In a 5 minutes run, 96K out of 220K crypto operations performed were useless – due to greedy
way of matching the signature set against the policy.

• An algorithm that can reduce/avoid such unnecessary crypto operations is needed.

20

(3) Impact of Channels & Resource Allocation

 0

 200

 400

 600

 800

 1000

 1200

2 4 8 16 32
 0

 10000

T
h

ro
u

g
h

p
u

t
(t

p
s

)

Allocated vCPUs (for all peers)
(a) Homogeneous Peers, 16 Channels

Throughput

 0

 200

 400

 600

 800

 1000

 1200

(8,0) (4,4) (2,6) (0,8)
 0

 10000

T
h

ro
u

g
h

p
u

t
(t

p
s

)

#Peers with (2, 32) vCPUs
(b) Heterogeneous Peers, 16 Channels

Throughput

With increase in the number of channels à Throughput increases due to additional parallelism

Impact of Resource Allocation: Homogeneous & Heterogeneous Peers

2 * 2 + 6 * 32 = 196 vCPUs

8 * 16 = 128 vCPUs

21

(3) Impact of Channels & Resource Allocation

• Guideline on configuring resources for channels
• Dedicated vCPUs per channel à for the maximum performance & avoid interference

• Homogeneous resource allocation is important – means the proportion as per demand and not
mean the same amount of resources. For e.g.,

• If Peer 1 receives 1000 tps, it might require 2 vCPUs
• If Peer 2 receives 500 tps, it might require only 1 vCPUs

• Research opportunity
• Each channel would receive different load at different period

• Need for efficient resource sharing among channels

• Dynamic resource provisioning to ensure homogeneous resource allocation as per the demand

22

(4) Impact of State DB choice & Transaction Complexities

• Conducted experiments with different transactions complexities for both
GolevelDB & CouchDB
• Refer to the paper for results

• Research opportunity:

• The usage of DB such as GoLevelDB and CouchDB, without snapshot isolation level, results
in the whole database lock -- not good to achieve higher throughput

• DB does not provide read & write set per transaction -- need to enhance DB

• Need to make DB more aware of blockchain operations and aid blockchain transactions to
improve performance

23

Fault Tolerance

• Peer failure does not affect the performance during non-overloaded scenario
• App can collect endorsement from other available peers – application dependent

• Node rejoining after a failure need to sync up with other peers
• Fetch missing blocks, validate and commit old transactions

• During overloaded scenario, rejoining peer could not sync up
• Rate(new blocks added) = Rate(old blocks fetched by the rejoining peer) = peek rate

• Research opportunity:
• protocol for rejoining peer’s sync up so that with any block commit rate, peer should be able to sync

• Adding a new peer is even worse -- need to fetch blocks from the beginning of the time, validate & commit

24

Proposed Optimizations & Performance Improvement

1. Introduce crypto cache to avoid repetitive crypto operations
• 3X improvement -- 140 tps to 520 tps

2. Parallelly validate multiple transactions in a block – in VSCC validation phase
• 7X improvement -- 140 tps to 980 tps

3. Bulk read/write during MVCC Validation and Commit
• 2.5X improvement -- 50 tps to 115 tps for CouchD

Combining all three optimization resulted in 16X improvement -- 140 tps to 2250 tps

Performance Improvement from Hyperledger Fabric v1.0 to Fabric v1.1

25

Conclusion

• Conducted a comprehensive performance benchmarking to
1. Provide guidelines on configuring parameters
2. Improve the performance by 16X
3. Identity research opportunity

• Future work -- to reach 20,000 tps to support RTGS systems
• Sharding
• Distributed validation

26

Thank You!
Questions?

27

