
Entropy-Aware I/O Pipelining for Large-Scale Deep
Learning on HPC Systems

Yue Zhu† Fahim Chowdhury† Huansong Fu† Adam Moody‡ Kathryn Mohror‡ Kento Sato‡ Weikuan Yu†

†Florida State University ‡Lawrence Livermore National Laboratory
{yzhu,fchowdhu,fu,yuw}@cs.fsu.edu {moody20,kathryn,sato5}@llnl.gov

Abstract—Deep neural networks have recently gained tremen-
dous interest due to their capabilities in a wide variety of
application areas such as computer vision and speech recognition.
Thus it is important to exploit the unprecedented power of
leadership High-Performance Computing (HPC) systems for
greater potential of deep learning. While much attention has
been paid to leverage the latest processors and accelerators, I/O
support also needs to keep up with the growth of computing
power for deep neural networks. In this research, we introduce an
entropy-aware I/O framework called DeepIO for large-scale deep
learning on HPC systems. Its overarching goal is to coordinate the
use of memory, communication, and I/O resources for efficient
training of datasets. DeepIO features an I/O pipeline that utilizes
several novel optimizations: RDMA (Remote Direct Memory
Access)-assisted in-situ shuffling, input pipelining, and entropy-
aware opportunistic ordering. In addition, we design a portable
storage interface to support efficient I/O on any underlying
storage system. We have implemented DeepIO as a prototype
for the popular TensorFlow framework and evaluated it on a
variety of different storage systems. Our evaluation shows that
DeepIO delivers significantly better performance than existing
memory-based storage systems.

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) ap-
plications have gained wide-spread prominence, particularly
because of the employment of powerful neural networks in
various application domains such as computer vision, image
classification [33], and natural language processing.

While neural networks with small datasets such as
NORB [35], Caltech-101/256 [20], [24], CIFAR-10/100 [32],
and MNIST [34] can be solved efficiently using a small group
of computation tasks, many shortcomings of small datasets
for training have been recognized in prior works. It has been
observed that small datasets fail to reflect real-world variations
and reduce the generalization of other datasets, as each object
can produce a wide range of images based on different poses,
positions, and scales [39], [45]. To meet the need of general-
ization, neural networks (e.g, GoogleNet [44], ResNet [26])
with larger filters and more weights are adopting deeper
layerswith larger datasets (LabelMe [40], ImageNet [19]),
because large datasets can prevent deep neural network (DNN)
from overfitting during training by utilizing more iterations to
update an increased number of weight parameters [43].

While there have been many existing efforts to enable deep
neural networks to leverage the powerful CPU and GPU pro-
cessors from leadership high-performance computing (HPC)

systems, large-scale deep learning with larger datasets requires
efficient I/O support from the underlying file and storage sys-
tems. For example, deep learning frameworks such as Tensor-
Flow [18] and Caffe [28] need to read datasets from backend
storage systems during training. In TensorFlow, datasets are
fetched from different platforms (e.g., HDFS [41], POSIX-
like file systems). Besides POSIX-like file system, Caffe also
supports other storage systems such as LMDB/LevelDB [6].
In these deep learning frameworks, in order to achieve a
high level of accuracy in the training model, datasets often
have to be read from the backend storage multiple times in a
random order. The randomization process, often called shuffle,
is important to avoid bias and update parameters of the training
model efficiently.

This I/O pattern has led to inefficiency in reading large
datasets from backend storage for many DNN training frame-
works. For some clusters that have node-local storage devices
(e.g., SSD), the dataset size is limited to the size of the
storage devices. Furthermore, on a GPU cluster, to meet the
training speed, the read bandwidth of devices is expected to
be relatively high. An alternative approach for the clusters
without node-local storage devices is to leverage traditional
parallel file systems (e.g, Lustre [11], BeeGFS [4]). However,
the read bandwidth of a parallel file system depends highly on
the size of the dataset. Small datasets can easily be “cached”
locally by parallel file systems for multiple reads whereas
large datasets cannot fit in the file system cache. For example,
our experiments show that on Cab [5] cluster at Lawrence
Livermore National Laboratory (LLNL), which uses Lustre as
the backend file system, TensorFlow’s reading bandwidth for
a dataset of 1 TB is less than half of that for a dataset of 32
GB.

In this research, we propose an efficient I/O framework for
large-scale deep learning on HPC systems. Our main objective
is to coordinate the use of memory, communication, and I/O
resources for efficient training. To this end, we design and
implement an entropy-aware I/O pipeline for TensorFlow. In
addition, to overcome the performance impedance of Tensor-
Flow dataset API, we design a portable storage interface so
that efficient I/O for deep learning can be enabled across a
wide variety of underlying file and storage systems.

Specifically, we make the following contributions:
• We design DeepIO, an I/O framework for training deep

neural networks.



• We implement DeepIO as a prototype for TensorFlow fea-
turing novel optimizations: RDMA-assisted in-situ shuf-
fling, input pipelining, and entropy-aware opportunistic
ordering.

• To overcome the overhead of the TensorFlow dataset API,
we develop a portable API for TensorFlow to leverage
DeepIO on different storage systems.

• We conduct a systematic set of evaluation tests that
show DeepIO improves the I/O bandwidth by at least
6.12 times and 1.17 times, respectively, compared with
a memory-based BeeGFS and Octopus [38], an RDMA-
based distributed persistent memory file system.

II. BACKGROUND & MOTIVATION

In this section, we review the background of using large
datasets in DNN and discuss the motivation for DeepIO.

A. DNN with Large Datasets
When training deep neural networks, large datasets are

commonly used since they represent diverse real-world sce-
narios. On HPC systems, the datasets can be placed on node-
local devices or parallel file systems such as Lustre [11]
and BeeGFS [4]. For example, Catalyst [8] at LLNL is
equipped with 800 GB node-local SSDs on every compute
node. However, the SSD devices with fast read speed and large
capacity are quite expensive and not available on all clusters.
Therefore, parallel file systems are a feasible choice for users
on HPC systems without node-local storage devices.

When dealing with datasets on parallel file systems, the
sizes of the datasets have a high impact on the reading speed.
We use BeeGFS as an example to illustrate this. If the size of
a dataset is relatively small, it can be cached in the memory of
BeeGFS clients or Object Storage Servers (OSSs). In this way,
after the first epoch of a DNN training, the dataset will always
be read from “cache” instead of being fetched from physical
storage devices. However, if the size of a dataset is large and
cannot be cached, some data must be fetched from physical
storage devices, since all images must be read in each training
epoch. The slow reading speed can significantly prolong the
training time.

To demonstrate the impact of dataset size on parallel file
system performance, we use IOR [10] to measure the maxi-
mum read bandwidth (N-to-N sequential read) of BeeGFS with
16 clients on our in-house cluster (the system configuration is
described in Section IV-A). In our examination, every node
reads 512 MB from BeeGFS (8 GB in total) for measuring
the impact of small datasets, and 10 GB (160 GB in total) for
measuring the impact of large datasets. The aggregated read
bandwidth for small datasets is 7411.98 MB/s, and 4662.49
MB/s for large datasets. As stated previously, the bandwidth
of reading small dataset is much greater than reading large
dataset since the small dataset can benefit from the OSS’s and
BeeGFS clients’ caches.

B. DNN Training Algorithms
There are several algorithms for optimizing training param-

eters of deep neural networks (DNN). Gradient descent is one

of the most popular algorithms. It uses prediction error to
update the parameters of models to reduce the error in the next
round. Batch gradient descent, stochastic gradient descent, and
mini-batch gradient descent are several variants of gradient
descent algorithms [1]. The difference among these three is
how frequently the parameters are updated: after processing
every element of a dataset (stochastic gradient descent), after
processing the entire dataset (batch gradient descent), or after
processing a few elements (mini-batch gradient descent). The
mini-batch gradient, often referred to as SGD (Stochastic
Gradient Descent) [3], is more commonly used because it
requires less memory and leads to faster convergence speed.
However, using SGD as the optimizer of a model requires the
sequence of input elements being randomly shuffled. This is to
avoid the model being biased by the noise of the input order.

C. Challenges from Large-Scale Deep Learning

With the growing size of DNN datasets, the training time
has been increasing as well. As described in the previous
section, SGD is one of the most popular algorithms for deep
learning. SGD allows weights and coefficients to be updated
more efficiently, by processing training samples in batches in-
stead of individually. To overcome the performance challenges
caused by large datasets, strategies such as distributed training
with large mini-batches are typically employed. Different
mini-batch sizes have been observed in practical training.

The batch size for a mini-batch is critical in terms of training
speed and accuracy. A small batch size leads to less computa-
tion in one iteration but can be more easily affected by noises
during the training process. A larger batch size reduces the
number of iterations per epoch, but it may cause the training
model to be less likely to converge. Although very large batch
size may have less competitive performance [30], many recent
studies have shown that cleverly enabling large minibatch
helps both training performance and training accuracy [31],
[37], [23], [47]. In addition, when training with SGD, it
requires the training dataset to be shuffled randomly before
each training epoch. This prevents possible overfitting of the
neural networks from inputting samples in a known order.
It remains a challenge on how to efficiently generate large
mini-batches for distributed DNN models while maintaining
the randomness of input datasets for accuracy assurance.

Deep learning frameworks such as TensorFlow and Caffe
support multiple file formats such as batched binary files and
raw images. When training with raw images, a massive amount
of small random reads are issued to parallel file systems
to offer full randomization while organizing mini-batches.
Therefore, simply enabling a large mini-batch on raw images
causes relatively low performance due to the random small
reads. When training with batched binary files, TensorFlow
can perform sequential reads, but the randomness of its input
datasets is highly dependent on the size of shuffling buffer in
the training framework, which is discussed in Section II-D.

Furthermore, using large mini-batches in DNN on HPC
systems requires a good match of performance between com-
putation and I/O during the training. As mentioned previously,



Mini-batch ready
for training

Dataset File 0

Dataset File 1

Dataset File i

…

Read Buffer
Shuffle Buffer

Mapping
Operation

Fill Up Buffer Parsed Tensors
Randomly 

Chose Output Batch

Source Map Shuffle Batch

Raw Element

…
…

…
Fill the Blank

Fig. 1: Data flow in TensorFlow Dataset API.

some large datasets have to be stored on parallel file systems
due to the HPC systems’ limitation. Although prefetching from
parallel file systems can be enabled to overlap the loading
with computation time, the read performance is still not able
to match the fast computation speed, especially with powerful
training devices, such as GPUs. For example, Goyal et al. [23]
report that the training time of one iteration is as low as
0.26 second with 11K images per mini-batch on 44 nodes.
To match such a speed, the estimated mini-batch producing
speed needs to be greater than 6 GB/s. And if the size of
the dataset is relatively large, it becomes difficult to deliver
the estimated reading speed when reading dataset through
a training framework from parallel file systems, since the
training framework can add additional overheads. Therefore,
there is a genuine need for a specialized, high-performance
I/O solution that can construct highly-randomized large mini-
batches for the DNN training.

D. Data Flow in TensorFlow Dataset API

As data fetching and randomization procedures are im-
portant for deep learning, we describe how mini-batches are
prepared for DNN training in TensorFlow.

TensorFlow provides tf.data API to enable data import-
ing [14]. The tf.data API simplifies importing data from
files in various formats (e.g., text files, raw images, zip files),
ensures randomization of the files, and transforms them into
batches. The tf.data API introduces several stages (e.g.,
Source, Map, Shuffle, Batch) for importing a dataset. Normally
mini-batches are generated in the following order: Source →
Map → Shuffle → Repeat → Batch. Note that the Shuffle step
is optional and a TensorFlow application can opt to read the
dataset elements in a specified order.

Fig. 1 shows these basic stages of reading files in Ten-
sorFlow (excluding the Repeat stage). First, the Source stage
retrieves elements from files and stores them in a read-in data
buffer. Then, the Map stage transforms the elements, e.g.,
decodes raw values into a three-dimensional pixel value tensor.
The Shuffle stage inserts the new elements in the shuffle buffer,
typically appending them to the end of the buffer. Then the
output of the Shuffle stage is randomly chosen from the shuffle
buffer for the Batch stage. The elements at the tail of the
shuffle buffer are moved to the indices of the randomly chosen
elements to fill the resulting holes. Finally, at the Batch stage,
TensorFlow accumulates N elements from the previous stage
(Shuffle in our example) to a mini-batch, and copies them into

1

10

100

1000

10000

Ext4-disk Ext4-ssd tmpfs BeeGFS-1C BeeGFS-4C

B
an

dw
id

th
(M

B
/s

)

TF Dataset API Raw

Fig. 2: Loading speed of TensorFlow Dataset API.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ext4-disk Ext4-ssd tmpfs BeeGFS-1CBeeGFS-4C

T
im
e
(s
)

Read Shuffle Batch Other

Fig. 3: Time breakdown of TensorFlow Dataset API.

a contiguous memory allocation. N is a parameter specified
by the user. Once a mini-batch is ready, it is used by the rest
of the TensorFlow training model.

We have used one of the tf.data API (i.e.,
tf.data.FixedLengthRecordDataset) to examine the
I/O performance of TensorFlow Dataset API with the Cifar10
training dataset, whose total size is 146.48 MB and fixed
element size is 3 KB. We measure the fixed length dataset read
speed with Source stage, Shuffle, and Batch stage (batch size
= 128) on disk (Ext4-disk), SSD (Ext4-ssd), memory (tmpfs),
1 BeeGFS client (BeeGFS-1C), and 4 BeeGFS clients
(BeeGFS-4C). We compare the performance of the API with
the raw performance of these file systems (denoted as Raw in
Fig. 2). As shown in Fig. 2, the performance on the Ext4-disk
system is similar to that of the tf.data API because the
slow disk speed overshadows any differences. However, the
performance of TensorFlow Dataset API on Ext4-ssd and
tmpfs are much lower than their raw performance, which is
caused by the overheads introduced by the TensorFlow API.



Moreover, with BeeGFS-1C, the tf.data API reports 46.8%
of the raw sequential read bandwidth. With BeeGFS-4C,
tf.data achieves 52.31% of the aggregate sequential read
performance. This is because the same amount of data is read
concurrently in both cases and when four clients are used,
there are less tf.data function calls for each client. One
reason that tf.data API’s mini-batch generation speed is
much lower than the file systems’ raw performance is that the
tf.data API introduces several memory copies in its data
path. In one epoch, the dataset has to be copied to a read
buffer for improving the read performance, and an additional
memory copy is also necessary when batching elements for
next layers.

We show the breakdown of time spent in each stage in
Fig. 3. In the tf.data API, very little time is spent performing
the actual functionality of each stage, and is instead spent on
reading and other overheads. One overhead is due to the fact
that the core of tf.data API and TensorFlow is implemented
in C++. While TensorFlow provides wrappers to execute C++
code in python, the cost of executing the wrappers to invoke
the C++ code is not trivial when the total execution time
is short. Furthermore, the tf.data API acquires iterators to
repetitively generate input data for training. Dispatching and
scheduling a thread from the threads pool for the iterators also
incur non-negligible overheads.

III. DESIGN

The design of DeepIO incorporates several techniques to
improve the I/O performance of distributed DNN training
frameworks. To remove the overhead of reading datasets from
backend storage, we design DeepIO to be an ephemeral, in-
memory storage system that is co-located with a distributed
DNN training application. By retaining datasets in memory,
we are able to employ additional techniques to improve
performance including RDMA data transfers, overlapping I/O
operations with training iterations, relaxing order of records
retrieval, and the DeepIO API for retrieving records.

In Fig. 4 we show the comparison of data flow between the
original TensorFlow and DeepIO with TensorFlow. Fig. 4(a)
shows the original TensorFlow data flow. Here, in each epoch,
every TensorFlow worker reads elements from a shard of the
dataset located on the backend storage using the TensorFlow
Dataset API. The element is a training image, which can be a
raw image (e.g., .JPG file), binary data (e.g, pixel value of an
image), etc. The element means the pixel value of an image in
the following sections if it is not specified. Then, the elements
are organized into mini-batches via the tf.data API.

With DeepIO, as shown in Fig. 4(b), dataset elements are
loaded from the backend storage into the memory of DeepIO
servers that run on each compute node. TensorFlow workers
access the elements using the DeepIO API. The DeepIO
servers employ several optimizations to return elements to
the workers with high performance: RDMA-assisted in-situ
shuffling, input pipelining to hide I/O latency, and entropy-
aware opportunistic ordering. In the RDMA-assisted in-situ
shuffling, datasets are buffered in each server’s local memory

and exposed to other DeepIO servers for RDMA_READ opera-
tions. Note that, since the dataset is now retained in memory,
elements can be easily re-shuffled between the participating
nodes for the next epoch without reloading dataset from back-
end storage. The input pipelining reduces the I/O waiting time
of workers by overlapping training with mini-batch generation.
For the entropy-aware opportunistic ordering, we observe that
the order of generated mini-batches is not important as long
as it is randomized rather than delivered in particular order.
Our approach is to relax the strict ordering requirements to
improve I/O performance while still maintaining the level of
randomness required by the training algorithm. To estimate
the level of randomness, DeepIO leverages the notion of cross-
entropy in the shuffling procedure. Cross-entropy is a measure
of how one probability distribution diverges from a second
expected probability distribution [16]. We use cross-entropy as
a measure of the difference between our relaxed ordering and
the fully-shuffled scheme on the probabilities of occurrence
for a sequence of data elements.

To incorporate DeepIO into TensorFlow, we also introduce a
portable API which also enables any backend storage system
to be used for loading datasets with high performance. The
detail of the API is discussed in Section III-D.

A. RDMA-Assisted In-Situ Shuffling

DeepIO stores the training dataset in the memory of the
distributed compute nodes and leverages RDMA for mini-
batch generations. As shown in Fig. 5, both the storage buffer
and the read buffer on DeepIO servers are exposed for RDMA
data transfer. The storage buffer is used to store the dataset in
memory, and the read buffer is used both as the destination
of dataset shuffling and the shared memory communication
conduit between a training worker and a DeepIO server for
updating status of memory blocks. This is in contrast to the
TensorFlow where workers sequentially read elements of a
batched dataset and randomly choose elements for the shuffle
buffer. In our approach, the shuffle operation occurs in-situ
with the placement of the elements into the read buffer. Every
block in the storage buffer and read buffer contains an element
whose size is known to DeepIO.

1) Memory-Resident Data Buffering: When the DeepIO
servers are launched, they establish RDMA connections be-
tween each other. The storage buffer on every node is allocated
and exposed to RDMA_READ. If the whole dataset can fit in the
memory available to DeepIO servers, each node will initialize
an equal number of blocks that in total can hold all elements
of the dataset. If not, the number of blocks initialized by the
servers will be contingent upon a configurable user-defined
ratio (e.g., 0.25) of the total dataset. The remaining portion
of the dataset left on storage will be read and processed in
a pipelined fashion, described later. Each DeepIO server will
read a different partition of the dataset from backend storage
into the storage buffer. Because the memory block size is equal
to the element size, the element ID equals to the block ID when
a dataset is all in memory. Therefore, any DeepIO server can



TF Worker 0
DNN Model

Input
Layer

……

Backend Storage

TF Worker 1
DNN Model

……

Read Read 

TensorFlow Dataset API Input
Layer

TensorFlow Dataset API

(a) Original TensorFlow.

TF Worker 0
DNN Model

Input
Layer

……

Backend Storage

DeepIO Front-End API
DeepIO Back-End API

TF Worker 1
DNN Model

Input
Layer

……

DeepIO Front-End API
DeepIO Back-End API

preload preload

shuffle / reshuffle
DeepIO Server 0

Entropy-Aware Opportunistic Ordering RDMA-Assisted in-Situ Shuffling

Read Buffer

Storage 
Buffer

Read Buffer

Storage 
Buffer

RDMA_READ

DeepIO Server 1

Input Pipelining

(b) TensorFlow with DeepIO.

Fig. 4: Data flow of reading dataset for TensorFlow.

Server 0

Read Buffer

2

Tag 

Data 4 6 1

Storage Buffer

0 21 3

Read Buffer

3

Tag 

Data 5 0 7

Storage Buffer

4 65 7

Server 1

Fig. 5: RDMA-assisted in-situ shuffling.

locate a desired element in the storage buffer by simply using
the block ID.

2) RDMA-Assisted Shuffling: To generate mini-batches,
DeepIO servers first create a random list of element IDs using
the same seed which is shared by broadcast at the beginning
of each epoch. Each DeepIO server generates the same list of
random IDs according to the same seed and then is assigned
a unique partition of the IDs list. After that, each server
will read its assigned elements from the storage buffer using
RDMA_READ or local memory read, depending on the location
of the element. The destination of an RDMA_READ or a local
memory read is the local read buffer. The structure of the
read buffer shown in Fig. 5 is designed to facilitate both data
shuffling and pipelining. The read buffer contains data and
an associated tag for each data element. The tag indicates
which elements have been used by the training workers and
which still need to be processed. The purpose of the tags is
to indicate the status of elements to further avoid the need
of copying the mini-batch elements to a separate buffer. The
blue and the orange blocks in Fig. 5 are corresponding to
the different element status. The blue blocks mean that the
reading is finished and the data is ready to be used. The orange
blocks imply that these blocks have been assigned to incoming
elements.

An advantage of our approach is that it can remove the
need for additional memory copies of the mini-batch elements,
depending on the behavior of the training framework. For
example, in Caffe, the memory data layer allows reading

data directly from memory without memory copy [7], so
the corresponding memory will not be released as long as
the data is still in it. Therefore, the RDMA-assisted in-situ
shuffling with zero-copy can be enabled when generating mini-
batches. However, TensorFlow requires a specialized output
tensor buffer in a TensorFlow operation [13]. The tensor buffer
will be released as soon as the tensor is not needed anymore.
In this case, an additional memory copy cannot be avoided for
re-organizing the data into the output tensor buffer. Then, the
generated mini-batches are ready for input to the DNN model,
as shown in Fig. 4.

B. Input Pipelining
To overlap disk I/O when the storage buffer is not able

to hold the entire dataset, DeepIO forms a pipeline of mini-
batches as shown in Fig. 6. To illustrate, we introduce two
pipeline processes in our multi-level pipeline scheme: a hy-
brid backend-memory pipeline and an in-memory pipeline.
The hybrid backend-memory pipeline is for overlapping the
training iterations when the size of the storage buffer of
DeepIO server is insufficient to hold the entire dataset and
some elements must be retrieved from backend storage. The
in-memory pipeline, indicated in Fig. 6 by the boxes with the
dashed line, is a part of the hybrid backend-memory pipeline.
It reads elements from the storage buffers of all participating
DeepIO servers and batches them for workers.

When the entire dataset resides in memory, the in-memory
pipeline moves elements from local and remote storage buffers
in a pipelined manner, overlapping training with mini-batch
preparation. During the in-memory pipeline, once the DeepIO
server detects the completion of an element read (RDMA_READ
or local memory copy), it updates the corresponding tag to
the read completed state. After the data of the block is used
or copied out by the training worker, the tag of the block
is updated to empty state to mark it as available for a new
element. The read buffer is viewed as a ring by the pipeline.
The pipeline progresses across the buffer to the next available
block to be replaced and wraps around from the tail of the
buffer to the head when the end is reached.

Hybrid backend-memory pipelining is designed to reduce
the overhead of constructing mini-batches when datasets can-



not be fully uploaded to the storage buffers. To allow the
uploading time to be overlapped with the training time, we
use a double buffering scheme. The read buffer is divided into
two equal-sized buffers. In one buffer, elements are continually
read in from backend storage in a sequential manner. Concur-
rently, the data in the other storage buffer partition is used
for shuffling and mini-batch generation. Because the random
elements chosen for the mini-batches come only from the in-
memory buffers and not from storage in this mode, the size
of the storage buffer may affect the randomization level of the
mini-batches. We discuss this impact in the next section.

C. Entropy-Aware Opportunistic Ordering

There are two modes to select elements for mini-batches in
DeepIO, ordered and entropy-aware opportunistic ordering. In
the ordered mode, the order of element retrieval is based on
the requests submitted by the client in the case that they opt
out of the shuffling step. However, in some training jobs, e.g.,
when using SGD for optimization, the input training elements
are not required to be in a meaningful order. Therefore, the
order of input elements is not important as long as the input
order is randomized. Using this knowledge, we introduce the
entropy-aware opportunistic ordering mode. Here, workers of
training frameworks, also referred to as clients, are not aware
of the input order and wait for the data prepared by the DeepIO
servers.

In ordered access mode, input requests are a list of element
IDs, which enables DeepIO servers to process a batch of
elements all at once and significantly reduce the overheads
of inter-process communication. There are two “cursors” to
guarantee the access order following the requested order. The
DeepIO server uses one cursor to indicate the first free data
block, and workers (clients) use another cursor to indicate
the next read position. The cursor used by the server moves
forward only after the block is assigned to an incoming
element. The issued read follows the submitted ID list. The
cursor used by the client moves forward when the tag for that
block marked as ready by the server. Therefore, the elements
are guaranteed to be processed in order since the data blocks
are assigned based on the input order by the DeepIO server.
However, this strict ordering results in a massive number of
small random reads from backend storage to the storage buffer
when the entire dataset cannot fit in the memory, which leads
to relatively low read bandwidth.

With entropy-aware opportunistic ordering, DeepIO servers
independently determine which elements will be taken in next
mini-batches. The algorithm for determining the elements for
mini-batches in opportunistic ordering is designed to avoid
excessive inter-process communication using a seed broad-
casting method, and it avoids a large number of small random
reads from backend storage by utilizing only the elements that
are loaded into the in-memory storage buffers. The DeepIO
servers receive element count and size of storage buffer for
shuffling before training starts. Then before each epoch, seeds
are broadcast to all servers which are used to generate random
lists of memory block IDs. Because the seed used to generate

…

Read

DeepIO Storage Buffer

…

…

Read Backend

Batch Time

One Iteration Time

In-Memory Pipeline

Read Backend

Hybrid Backend-Memory Pipeline

Time

Fig. 6: Pipeline of importing dataset with opportunistic order.

the list is the same on all servers, the random list is identical
across servers. Each DeepIO server uses a pre-assigned portion
of the random list of memory block IDs for the mini-batch
generation. Then, similar to the ordered access mode, each
server issues element read requests according to the order
of the IDs until the read buffer is filled up. By using input
pipelining in DeepIO, the element read requests are overlapped
with the training of the workers.

In DNN training process, randomization is ensured by
shuffling input elements. The input order generation is similar
to the events of randomly choosing elements from a dataset.
According to the Information Theory, an unlikely event is
more informative than a likely event [17]. Similarly, when
training with shuffled input order, a higher randomized order is
more informative than a non-randomized order. For example,
if an input order of each epoch is fixed, i.e., the probability
of the appearance of the input order is 1, the training model
actually learns the noise of the elements’ order instead of the
elements themselves.

We leverage cross-entropy to help estimate the random-
ization level (RL) of an input sequence. The cross-entropy
H(P,Q) is

H(P,Q) =−∑
i

P(i)log2 (Q(i)) , (1)

where P(i) and Q(i) indicate the probabilities of the occur-
rence of i-th event.

When we have to use our hybrid backend-memory pipelin-
ing approach due to limited memory size, the randomization
level is affected since not all elements are available in the
in-memory storage buffer for organizing mini-batches at ev-
ery training iteration. Therefore, the possibility of an input
sequence of a hybrid backend-memory pipeline is

P =
1

∏
Nr
1

(
CNc

N f−r×Nc
×Nmem!

) , (2)

where Nmem is the number of memory blocks on all compute
nodes, N f is the number of files of a dataset, Nc is the number
of files that can be uploaded in Nmem memory blocks, Nr is the
number of rounds needed for N f files to be uploaded to the



0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

A
cc

ur
ac

y

Epochs

RL = 100% RL = 73% RL = 49%
RL = 16% RL = 0%

Fig. 7: Validation Accuracy with Different Randomization
Level on AlexNet.

Nmem blocks, and r indicates the r-th file uploading round in
an epoch. Then, CNc

N f−r×Nc
in Equation 2 implies the number of

possible file combinations in memory, and Nmem! is the number
of all possible input sequence for one file uploading round. In
addition, the possibility of a fully shuffled input sequence is

Q =
1

Nimages!
, (3)

where Nimages is the image count of a dataset.
Equation 2 and 3, however, are hard to calculate if a dataset

has a large number of files and elements. To evade the potential
calculation problem, we calculate the appearance probability
of each element when building the input file sequence with
different modes. We leverage P(i,r) and Q(i), shown in
Equation 4, as the possibility of i-th element in a pipelined
and a fully shuffled sequence, respectively.

P(i,r) =
Nc

N f −Nc× r
× 1

Nmem− i%Nmem
,

Q(i) =
1

Nimages− i
,

(4)

where r is the dataset file uploading round ID, Nc
N f−Nc×r in

P(i,r) implies the chance of selected files on memory blocks
in pipelined sequence with shuffling without replacement,
and 1

Nmem−i%Nmem
and 1

Nimages−i are the possibility of randomly
choosing elements without replacement from memory blocks.
Then, P(i,r) and Q(i) from Equation 4 can be applied to Equa-
tion 1 to calculate the cross-entropy between any pipelined and
fully shuffled sequences. Therefore, the randomization level
(RL) is

RL =
H

H f ully
, (5)

where H f ully indicates the cross-entropy between two fully
shuffled sequences, and H is the cross-entropy between the
input sequence and a fully shuffled sequence. When RL =
100%, it means that the input sequence is fully shuffled. When

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

A
cc

ur
ac

y

Epochs

R = 1 R = 0.5 R = 0.25

(a) 1 Node

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

A
cc

ur
ac

y

Epochs

R = 1 R = 0.5 R = 0.25

(b) 2 Nodes

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

A
cc

ur
ac

y

Epochs

R = 1 R = 0.5 R = 0.25

(c) 4 Nodes

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

A
cc

ur
ac

y

Epochs

R = 1 R = 0.5 R = 0.25

(d) 8 Nodes

Fig. 8: Accuracy validation for entropy-aware pipelining.

RL = 0%, it implies that the input sequence is in a constant
order.

To show the randomization level effect on the validation
accuracy, we have trained AlexNet [33] with Cal101 dataset
on a single machine, where the AlexNet is a convolutional
neural network with eight layers and the Cal101 is a dataset
with 101 categories and 40 to 800 images per category. In
the experiments, we divide the dataset into training (85%)
and validation (15%) portions. The RL in Fig. 7 indicates the
randomization level, and RL = 100% and RL = 0% mean fully
shuffled and constant order, respectively. To emulate other
randomization levels, we read N images in a constant order.
RL= 73%,49%, and 16% imply that 4, 16, and 256 images are
concatenated in a constant sequence, which means that every
4, 16, and 256 images are treated as an independent element in
shuffling, respectively. As shown in Fig. 7, the best validation
accuracy comes with full shuffling, and the accuracy decreases
with the randomization level decreasing.

To demonstrate that our pipeline does not affect the ran-
domization level, we have trained the AlexNet similarly to
the previous experiment but on multiple nodes, as shown
in Fig. 8. In Fig. 8, R indicates the ratio of the shuffling
memory size to the size of the entire training dataset. For
example, when R = 0.25, it means that the memory size used
to store the dataset for one round of random read is 25%
of the entire dataset. When R = 1, it means that the entire
dataset is resided on the memory indicating no uploading
pipeline. The randomization level of R = 0.5 and 0.25 are
98.54% and 96.96% respectively. Therefore, in these cases, the
randomization of generated mini-batches could deliver almost
the same validation accuracy as shown in Fig. 8. Although
the size of mini-batches changes with node counts, we can
still keep high training accuracy by carefully adjusting training
parameters.



D. DeepIO API

We design a generic API for integrating DeepIO into Ten-
sorFlow. We provide a frontend and backend API to support
loading dataset to TensorFlow. Our goal in developing this API
is to enable datasets to be read easily from different storage
systems using our DeepIO framework. Additionally, using the
DeepIO API avoids the redundant memory copies and thread
scheduling overheads presenting in the TensorFlow tf.data
API.

The frontend API is used directly by a training worker:
1) generate_seed(epoch_count, seed_file);

Generate a seed list whose length is epoch_count and
store in a seed_file.

2) index_array = shuffle_rand(epoch_id,
worker_id, seed_file);
Get a randomized index array based on a provided seed
from seed_file for a specific worker with worker_id
at the certain epoch.

3) mini_batch = deepIO_batch(index_array,
batch_size, element_size, count_per_read,
dataset_filename_list);
Read and produce a mini-batch with batch_size
of elements based on the previously generated
index_array. element_size is the fixed length of
each element (i.e., image), count_per_read is the
element count when reading from backend storage used
in the backend API, and dataset_filename_list
contains the list of the dataset file name. Note that this
is a TensorFlow operation.

The backend API (inside the deepIO_batch() for incorpo-
rating different storage systems):

1) deepIO_inner_read(index, read_size,
count_per_read, out_tensor, &fs_read);
This function works inside the previous deepIO_batch
TensorFlow operation. index indicates the element IDs,
read_size and count_per_read indicate the read
size to underlying storage systems, out_tensor is the
destination of output tensor, and fs_read is the read
function for reading images from a specified storage
system.

2) deepIO_inner_init(&fs_init, argv);
fs_init is the initialization function of the backend
system. Same as deepIO_inner_read(), this function
also resides inside the deepIO_batch.

Here, we briefly describe the implementation of DeepIO
API. First, to avoid the additional communication channel to
be built for broadcasting the randomized image index array,
DeepIO stores a seed list for universally generating the array
on every node by generate_seed(). Then each worker can
use the seed to produce a shuffled index array and fetch
its portion of the index array based on the worker ID in
shuffle_rand(). Before using the deepIO_batch() to build
mini-batches from different storage systems, the additional
effort for indicating the read and the initialization function
of the storage system is needed. The mini-batches that are

the output of deepIO_batch() will be ready for the next
training iteration. The TensorFlow operation deepIO_batch()
is written, registered, and run in the same way as the original
TensorFlow operations [13], and there is no additional change
to the TensorFlow source code. In addition, to reduce the
potential overheads involved in the TensorFlow tf.data API,
we directly enable loading mini-batches from DeepIO API
instead of implementing DeepIO as a general file system
platform [12] for TensorFlow.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of DeepIO
implementation. We explore the contributions of the use of
DeepIO API, pipelining, and entropy-aware opportunistic or-
dering.

A. Experimental Setup

We conduct our experiments on Innovation, an in-house
cluster at Florida State University. Each node is equipped
with 10 dual-socket Intel Xeon(R) CPU E5-2650 cores, 64
GB memory, and a 1 TB Seagate ST91000640NS SATA disk.
Some of the nodes are equipped with a 400 GB Intel DC
P3700 NVMe SSD. All nodes are connected through an FDR
InfiniBand interconnect with the ConnectX-3 NIC.

Because there is no other open source solution similar to
DeepIO for addressing the potential I/O problems in DNN
training, we evaluate our DeepIO against two existing storage
systems.

BeeGFS: We use BeeGFS as an example of a conventional
parallel file system. For a fair comparison, we set up BeeGFS
over memory (tmpfs) for storage. We have two Metadata
Servers and six Object Storage Servers. Each Metadata Server
has one Metadata Target of 30 GiB size, and each Object
Storage Server maintains two RAID’ed Object Storage Targets
of 60 GiB each. These sizes are selected according to the
need of the dataset we were using. For the striping pattern of
BeeGFS, we use default RAID0 type with the chunk size of
512K and 4 desired storage targets.

Octopus: Although there are a few memory-based storage
systems, such as Crail [42], NVFS [27], and Alluxio [36],
we use Octopus [38] as the RDMA- and memory-based
comparison target of DeepIO. As the state-of-the-art RDMA
based memory file system solution, Octopus already shows
that it can outperform the other options listed above. Since
DeepIO leverages memory of allocated compute nodes as
data storage, we also emulate the same scenario when using
Octopus on compute nodes for a fair comparison. Therefore,
Octopus’s servers and clients are collocated on the same nodes
(i.e., one server and one client on one node).

To measure the read performance of BeeGFS, Octopus, and
DeepIO, we generate a dummy dataset with random numbers
to represent the pixel values of images. As randomization
is needed for reading training dataset, we leverage fully
randomized read across all files. Therefore, the read pattern in
tests is fully randomized if there is no additional notification.
The reported results are the average of 10 tests.



1

10

100

1 KB 4 KB 16 KB 64 KB 256 KB 1024 KB

Ba
nd

w
id

th
(G

B/
s)

Element Sizes

BeeGFS-Seq Octopus DeepIO-Base DeepIO-Opp

Fig. 9: Aggregate read bandwidth for different element sizes.

B. Overall Bandwidth

Here we evaluate the bandwidth achieved by DeepIO using
different element sizes, node counts, and numbers of clients.

1) Read Bandwidth of Different Read Sizes: Fig. 9 shows
the concurrent random read bandwidth with varying image
sizes (element sizes) on 16 nodes for BeeGFS, Octopus, and
DeepIO. In our experiments, the total read size is 160 GB,
with 10 GB per node. The element size varies from 1 KB to
1 MB. Although running on memory, the read bandwidth of
BeeGFS is still limited by its complexity. Our experimental
results show that the fully randomized read bandwidth on
BeeGFS (not shown in Fig. 9) is at least 2× lower than the
aggregate N-to-N sequential read bandwidth (N processes read
N files simultaneously). So we leverage the aggregate N-to-N
sequential read bandwidth of BeeGFS as the baseline, which
is denoted as BeeGFS-Seq in Fig. 9. The fully shuffled read
bandwidth of Octopus is implied as Octopus in Fig. 9. For
DeepIO, we have two test scenarios as shown in Fig. 9, where
DeepIO-Base indicates that the returned elements follow the
input request submission order, and DeepIO-Opp indicates that
the returned elements follow the opportunistic order.

In Fig. 9, when the element size is small, BeeGFS-
Seq performs better than Octopus. This is because Octopus
clients read elements in a fully randomized order instead
of sequentially. Moreover, comparing Octopus and DeepIO’s
performance, the Octopus’s read performance is much lower
than DeepIO when the element size is small. This is because
clients of Octopus have to consult their servers to know the
address of the requested data before data operations. When
the element size is small, more requests for checking data
addresses with Octopus’s servers are triggered by the clients,
leading to relatively lower performance. In fact, because the
training models only read datasets instead of overwriting them,
it is not necessary to check the address of data with Octopus’
server for every read request. Additionally, because servers and
clients are collocated on the same nodes, both in and out data
transfers consume the RDMA bandwidth. In contrast, DeepIO
shows better read performance for all, especially on small
element sizes, since no redundant operations are performed
while reading elements from memory. Therefore, Octopus as
a general-purpose file system cannot match the performance
of DeepIO.

0
10
20
30
40
50
60

2 4 8 12 16

Ba
nd

w
id

th
(G

B/
s)

Number of Nodes

BeeGFS-Seq Octopus DeepIO-Base DeepIO-Opp

Fig. 10: Aggregate read bandwidth with different node count.

Overall, DeepIO-Base and DeepIO-Opp outperform
BeeGFS-Seq by at least 1.43× and 1.82×, and up to 11.14×
and 11.54×; DeepIO-Base and DeepIO-Opp surpass Octopus
by at least 1.5× and 1.59×, and up to 9.34× and 9.86×.
When the element size is small (e.g., 1 KB), the performance
of DeepIO-Opp is 16.1% higher than DeepIO-Base; but
when the element size is getting larger, the performance
difference between the two becomes less, as less inter-process
communications are triggered in reading.

2) Read Bandwidth at Scale: We also evaluate the read
bandwidth using a larger number of nodes. As Fig. 9 reveals,
the read performance does not increase much when the el-
ement size is greater than 256 KB. We use 256 KB as the
element size for the scalability tests. The results for scalability
tests are shown in Fig. 10. The aggregate read performances
of all test cases increase with the number of nodes. Both
DeepIO scenarios have consistently better performance than
the other two systems, mainly because there are fewer over-
heads introduced in a read operation. In overall, DeepIO-Base
and DeepIO-Opp outperform BeeGFS-Seq by at least 6.12×
and 7.81×, respectively; they also exceed Octopus by at least
1.17× and 1.21×, respectively.

C. Data Importing API for TensorFlow

We deploy DeepIO API and compare the performance of
reading dataset through raw DeepIO (i.e. DeepIO-Raw) and
the proposed DeepIO TensorFlow API (DeepIO-TF). Fig. 11
shows the aggregate bandwidth over different node counts with
the read size of 256 KB. The performance of importing data
through DeepIO-TF delivers around 26.7% of the DeepIO-
Raw. This is because the read time with DeepIO-Raw is too
short and the added overhead time in DeepIO-TF is close to
the pure DeepIO read time.

We further compare our DeepIO API with TensorFlow’s
Dataset API over several different types of file/storage systems
(i.e., Ext4-disk, Ext4-ssd, tmpfs, BeeGFS-1C, BeeGFS-4C
mentioned in Section II-D). Table I shows the read bandwidth
of using different APIs over different storage systems with two
datasets (Cifar10 and a 16 GB dummy dataset). The element
size of Cifar10 and the 16 GB dummy dataset are 3 KB and
256 KB, respectively. The read performance is largely different
for different backends.



0

10

20

30

40

50

60

2 4 8 16

B
an

dw
id

th
 (G

B
/s

)

Number of Nodes

DeepIO-TF DeepIO-Raw

Fig. 11: Read bandwidth of alternative data APIs.

(MB/s) TF Dataset API DeepIO API
3 KB 256 KB 3 KB 256 KB

Ext4-disk 105.641 95.971 122.363 103.267

Ext4-ssd 324.927 438.183 572.116 987.103

tmpfs 384.07 478.433 907.193 2034.814

BeeGFS-1C 97.429 145.744 105.672 259.589

BeeGFS-4C 485.739 718.606 572.978 1184.631

TABLE I: Images loading speed of different APIs on different
storage systems.

According to Table I, for Cifar10 (3 KB), DeepIO API out-
performs TensorFlow Dataset API by 15.8%, 76.1%, 1.36%,
8.46%, and 26.7%, over Ext4-disk, Ext-ssd, tmpfs, BeeGFS-
1C, and BeeGFS-4C, respectively. For the dummy dataset, the
performance of DeepIO API exceeds TensorFlow Dataset API
by 7.63%, 1.25×, 3.25×, 78.11%, and 64.85% for the same
five storage systems, respectively. The performance difference
between DeepIO API and TensorFlow Dataset API over Ext-
disk and BeeGFS-1C is not obvious which is due to the
relatively low raw bandwidth of backend storage. In addition,
according to Table I, with a larger size of dataset (16 GB)
and element size (256 KB), DeepIO delivers higher bandwidth
compared to TensorFlow Dataset API. One thing to note is that
the performance of BeeGFS-4C is 4× greater than BeeGFS-
1C. This is caused by more client side cache involvement.
As we don’t disable cache effect when reading datasets from
BeeGFS, using 4 BeeGFS clients across 4 nodes allows more
data to be cached while reading.

To understand overheads in TensorFlow Dataset API and
DeepIO API, we investigate the time breakdown of the loading
process via those two APIs over the same five storage systems
(mentioned above). The results are shown in Fig. 12. The TF
and DeepIO indicate TensorFlow Dataset API and DeepIO
API, respectively. We see that the actual read time (gray por-
tion) is similar for both APIs on the same storage devices, but
the other time cost (read portion) for DeepIO is much lower
than TensorFlow Dataset API because we do not introduce the
thread scheduling overheads and redundant memory copies
when loading datasets. Furthermore, when dealing with the
dummy dataset, since the total I/O time is long, the overheads

0

0.5

1

1.5

2

T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O

Ext4-disk Ext4-ssd tmpfs BeeGFS-1C BeeGFS-4C

T
im
e
(s
)

Read Others

(a) Time breakdown of reading Cifar10 (3 KB).

0

50

100

150

200

T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O

Ext4-disk Ext4-ssd tmpfs BeeGFS-1C BeeGFS-4C

T
im
e
(s
)

Read Others

(b) Time breakdown of reading a dummy dataset (256 KB).

Fig. 12: Time breakdown of different loading APIs.

introduced by DeepIO API are almost negligible, as shown in
Fig. 12(b). In contrast, when reading Cifar10, since the total
I/O time is short, there is a non-trivial overhead, as shown in
Fig. 12(a). In a nutshell, the overhead analysis echoes with the
bandwidth results we have in Table I.

D. Performance of Input Pipelining

Fig. 13 shows the overall time for loading a dataset and
training with different training iteration time. In the figure, R
indicates that the ratio of the shuffle buffer size to the training
dataset size, which has been described in Section III-C.

We use 8 DeepIO servers and 8 dummy training workers
on 8 different nodes. Every dummy training worker batches
N elements in each iteration but does not do any real training.
In our experiments, N = 128, the element size is 256 KB, and
the dataset size is 8 GB. Therefore, the total size of elements
for each iteration over 8 nodes is 256 MB. Every DeepIO
server reads 1 GB out of the 8 GB dataset from BeeGFS via
the BeeGFS client on the node in every epoch. The aggregate
dataset uploading bandwidth over 8 BeeGFS clients is 2526.25
MB/s. To investigate the effect of overlapping training and
uploading, we use different time intervals to emulate the
training iteration time. Every dummy worker sleeps 100, 50,
10, or 5 ms after acquiring every 128 elements in different
test sets.

The results are shown in Fig. 13. When R = 0, as every
element is directly read from BeeGFS, the worker has to wait
until 128 elements are read before a training iteration starts.
This significantly prolongs the total execution time. When



0

2

4

6

100 50 10 5

To
ta

l E
xe

cu
tio

n 
T

im
e 

(s
)

Training Iteration Time (ms)

R = 1 R = 0.5 R = 0.25 R= 0

Fig. 13: Total execution time with input pipelining.

R = 1 (all data stays in the memory), the overall execution
time decreases with the training iteration time, since the per-
formance is not affected by the backend uploading bandwidth.
When the time of training iteration equals 100 ms, the total
execution time of the first three cases is comparable. This
happens because the required minimum backend uploading
bandwidth is 2.5 GB/s when the training time is 100 ms,
and the aggregate uploading bandwidth (256 MB/100 ms) of
8 BeeGFS clients can meet the requirement. However, when
the training time decreases to 50, 10, or 5 ms, the required
minimum backend uploading bandwidth increases to 5 GB/s,
25 GB/s, or 50 GB/s, respectively. Therefore, the BeeGFS
aggregate bandwidth of 8 nodes cannot allow the uploading
to be overlapped by the training shown as R = 0.5 and 0.25 in
Fig. 13. However, normally in real-world DNN training, the
time of one iteration is not as short as those in our experiments.
Thus, with appropriate uploading bandwidth, the uploading
process can be easily overlapped by the training process.

V. RELATED WORKS

Google Brain team develops TensorFlow [18] and shows
its good scalability and training throughput. However, the
introduced Dataset API cannot satisfy the need of the full
randomization of input dataset among nodes. Caffe [28] as
another popular DNN training framework, supports images
in raw, HDF5, and LevelDB/LMDB formats. However, in
Caffe, reading raw images incurs massive random small reads,
shuffling data between HDF5 files is not allowed, and Lev-
elDB/LMDB database format is limited to sequential access.
In addition, LBANN [46] uses node-local storage device to
store dataset, but not all clusters feature the expensive fast-
speed node-local storage devices. Similarly, Weka.IO [15] is
a commercial file system that is built over NVMe devices
for various types of workloads, including machine learning.
However, it needs additional costs and efforts on purchasing
and installation on a group of separate storage nodes. In
contrast, DeepIO provides an efficient and effective solution
to data importing for the DNN training on most HPC systems.

Moreover, many research studies ([29], [27], [25], [38], [42],
[9], [2], [36], [15], [22]) have been carried out to exploit
Remote Direct Memory Access (RDMA) for improving the
communication speed among the compute nodes of clusters

and consequently improving the I/O performance of various
types of systems, such as remote memory paging [25], key-
value stores [29], [21], distributed file systems [27], [38], [42].
In particular, Lu et al. [38] leverage persistent memory with
RDMA for developing a file system with high throughput on
data I/O and low latency on metadata operations. Stedui et
al. [42] propose a fast multi-tiered distributed storage system
from ground up for high-performance network and storage
hardware to deliver user-level I/O. However, applying the
aforementioned RDMA-accelerated middleware directly for
DNN training incurs unnecessarily complicated communica-
tion process and memory copying, as shown in Section IV.

VI. CONCLUSION

The large datasets of DNN training on HPC systems may
suffer from the low reading speed due to the limitation of
parallel file systems. To better organize mini-batches over HPC
systems, we introduce DeepIO for large-scale deep learning
with RDMA-assisted in-situ shuffling, input pipelining, and
entropy-aware opportunistic ordering. In addition, to imple-
ment DeepIO as a prototype over TensorFlow, we implement
an alternative data API to allow loading dataset easily from
different underlying storage systems. Our experiments show
that DeepIO can outperform BeeGFS and Octopus by at least
6.12× and 1.17×, respectively.

Acknowledgment

This work is performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
750269)1. This work is also supported in part by the National
Science Foundation awards 1561041, 1564647, and 1744336.
We are thankful to Mr. Amit Kumar Nath for his editing
comments on the paper.

REFERENCES

[1] A Gentle Introduction to Mini-Batch Gradient Descent and How
to Configure Batch Size. https://machinelearningmastery.com/
gentle-introduction-mini-batch-gradient-descent-configure-batch-size/.

[2] Accelio. http://www.accelio.org/.
[3] An Overview of Gradient Descent Optimization Algorithms. http://ruder.

io/optimizing-gradient-descent/index.html#minibatchgradientdescent.
[4] BeeGFS. https://www.beegfs.io/content/.
[5] Cab. https://computation.llnl.gov/computers/cab.
[6] Caffe Layers. http://caffe.berkeleyvision.org/tutorial/layers.html.
[7] Caffe: Memory Data Layer. http://caffe.berkeleyvision.org/tutorial/

layers/memorydata.html.

1This document was prepared as an account of work sponsored by an
agency of the United States government. Neither the United States government
nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.



[8] Catalyst. https://computation.llnl.gov/computers/catalyst.
[9] Ceph over Accelio. https://www.cohortfs.com/ceph-over-accelio.

[10] IOR Benchmark. https://github.com/LLNL/ior.
[11] Lustre File System. http://www.lustre.org.
[12] TensorFlow Adding a Custom Filesystem Plugin. https://www.

tensorflow.org/versions/master/extend/add filesys.
[13] TensorFlow: Adding a New Op. https://www.tensorflow.org/versions/

master/extend/adding an op.
[14] TensorFlow Importing Data. https://www.tensorflow.org/programmers

guide/datasets.
[15] Weka.IO. https://www.weka.io/.
[16] Wikipedia: Cross Entropy. https://en.wikipedia.org/wiki/Cross entropy.
[17] Wikipedia Information Theory. https://en.wikipedia.org/wiki/

Information theory.
[18] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A Large-scale Hierarchical Image Database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. IEEE, 2009.

[20] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning Generative
Visual Models from Few Training Examples: An Incremental Bayesian
Approach Tested on 101 Object Categories. Computer vision and Image
understanding, 106(1):59–70, 2007.

[21] Huansong Fu, Manjunath Gorentla Venkata, Ahana Roy Choudhury,
Neena Imam, and Weikuan Yu. High-Performance Key-Value Store on
OpenSHMEM. In Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 559–568.
IEEE Press, 2017.

[22] Huansong Fu, Manjunath Gorentla Venkata, Shaeke Salman, Neena
Imam, and Weikuan Yu. SHMEMGraph: Efficient and Balanced Graph
Processing Using One-sided Communication.

[23] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, Large Minibatch SGD: Training Imagenet in 1 Hour.
arXiv preprint arXiv:1706.02677, 2017.

[24] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 Object
Category Dataset. 2007.

[25] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. Efficient Memory Disaggregation with Infiniswap.
In NSDI, pages 649–667, 2017.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[27] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. High Performance Design for HDFS with Byte-
Addressability of NVM and RDMA. In Proceedings of the 2016
International Conference on Supercomputing, page 8. ACM, 2016.

[28] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding. In Proceedings
of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

[29] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang,
Md Wasi-ur Rahman, Nusrat S Islam, Xiangyong Ouyang, Hao Wang,
Sayantan Sur, et al. Memcached Design on High Performance RDMA
Capable Interconnects. In Parallel Processing (ICPP), 2011 Interna-
tional Conference on, pages 743–752. IEEE, 2011.

[30] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On Large-batch Training for
Deep Learning: Generalization Gap and Sharp Minima. arXiv preprint
arXiv:1609.04836, 2016.

[31] Alex Krizhevsky. One Weird Trick for Parallelizing Convolutional
Neural Networks. arXiv preprint arXiv:1404.5997, 2014.

[32] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of
Features from Tiny Images. 2009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
Classification With Deep Convolutional Neural Networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[34] Yann LeCun, Corinna Cortes, and Christopher JC Burges. MNIST Hand-
written Digit Database. AT&T Labs [Online]. Available: http://yann.
lecun. com/exdb/mnist, 2, 2010.

[35] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning Methods for
Generic Object Recognition with Invariance to Pose and Lighting. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, volume 2, pages
II–104. IEEE, 2004.

[36] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
Tachyon: Reliable, Memory Speed Storage for Cluster Computing
Frameworks. In Proceedings of the ACM Symposium on Cloud Com-
puting, pages 1–15. ACM, 2014.

[37] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient
Mini-batch Training for Stochastic Optimization. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 661–670. ACM, 2014.

[38] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an RDMA-
enabled Distributed Persistent Memory File System. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 773–785, 2017.

[39] Nicolas Pinto, David D Cox, and James J DiCarlo. Why is Real-world
Visual Object Recognition Hard? PLoS computational biology, 4(1):e27,
2008.

[40] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T
Freeman. LabelMe: A Database and Web-based Tool for Image
Annotation. International journal of computer vision, 77(1):157–173,
2008.

[41] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Mass storage systems
and technologies (MSST), 2010 IEEE 26th symposium on, pages 1–10.
Ieee, 2010.

[42] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard
Metzler, Nikolas Ioannou, and Ioannis Koltsidas. Crail: A High-
Performance I/O Architecture for Distributed Data Processing. IEEE
Data Eng. Bull., 40(1):38–49, 2017.

[43] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient
Processing of Deep Neural Networks: A Tutorial and Survey. Proceed-
ings of the IEEE, 105(12):2295–2329, 2017.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, et al. Going Deeper with Convolutions. Cvpr, 2015.

[45] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the Gap to Human-Level Performance in Face
Verification. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1701–1708, 2014.

[46] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry
Chen. LBANN: Livermore Big Artificial Neural Network HPC Toolkit.
In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, page 5. ACM, 2015.

[47] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for Imagenet Training. arXiv preprint arXiv:1708.03888, 2017.


