Section 7.9, Nonhomogeneous Linear Systems (Variation of Parameters)
(Note: The method below is not as in the text, but is based on it.)

I. To find the general solution for the system \(x' = Ax + g(t) \):
 1. First find the general solution \(x_c(t) \) of \(x' = Ax \).
 2. Use Variation of Parameters to find a particular solution \(X(t) \) of \(x' = Ax + g(t) \).
 3. The general solution of \(x' = Ax + g(t) \) is \(x(t) = x_c(t) + X(t) \).

II. The method of Variation of Parameters for systems:

 Suppose the homogeneous equation \(x' = Ax \) has the general solution
 \[
 x_c(t) = c_1 x^{(1)}(t) + \cdots + c_n x^{(n)}(t).
 \]

 Then \(X(t) \) will have the form \(X(t) = u_1(t) x^{(1)}(t) + \cdots + u_n(t) x^{(n)}(t) \) obtained by allowing the parameters to "vary".

 To find the values of the \(u_i'(t) \), solve the system
 \[
 u_1'(t) x^{(1)}(t) + \cdots + u_n'(t) x^{(n)}(t) = g(t)
 \]
 (or equivalently, \(\Psi(t) u'(t) = g(t) \)).

 This system can be solved using Cramer’s rule or by reducing an augmented matrix.

 Integrate each \(u_i'(t) \) to find \(c_i(t) \).

 Example: Solve \(x'(t) = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ e^t \end{bmatrix} \) if \(\psi(t) = \begin{bmatrix} e^{-t} & 3e^{4t} \\ -e^{-t} & 2e^{4t} \end{bmatrix} \).