Section 3.2, Fundamental Solutions of Linear Homogeneous Equations

Existence and Uniqueness Theorem for Second Order Linear I.V.P.s
Consider the initial value problem \(y'' + p(t)y' + q(t)y = g(t) \), \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \), where \(p, q, \) and \(g \) are continuous on an open interval \(I \). Then there is a unique solution \(y(t) = \Phi(t) \) of this problem, and the solution exists throughout the interval \(I \).

This theorem says three things:
1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.
3. The solution \(\Phi \) is defined throughout the interval \(I \) where the coefficients and \(g(t) \) are continuous and at least twice differentiable there.

Example 1.

a) Find all intervals in which an initial value problem \((t - 3)y'' + 5y' - y = t \), \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \) is certain to have a unique twice differentiable solution.

\[
y'' + \frac{\frac{5}{t-3}y'}{t-3} - \frac{1}{t-3}y = \frac{t}{t-3} \quad \text{if } p(t), q(t) \text{ and } g(t) \text{ are not continuous at } t = 3
\]

standard form \(\Rightarrow \) two intervals: \((-\infty, 3), (3, \infty)\)

b) What is the longest interval in which an initial value problem \((t - 3)y'' + 5y' - y = t \), \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \) is certain to have a unique twice differentiable solution if \(t_0 = 4 \)?

\((3, \infty)\)

c) What is the longest interval in which an initial value problem \((t - 3)y'' + 5y' - y = t \), \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \) is certain to have a unique twice differentiable solution if \(t_0 = -2 \).

\((-\infty, 3)\)

d) What does the Existence and Uniqueness Theorem for Second Order Linear I.V.P.s tell us about a solution of the initial value problem \((t - 3)y'' + 5y' - y = t \), \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \) is certain to have a unique twice differentiable solution if \(t_0 = 3 \)?

No information

Example 2. Prove that for \(ay'' + by' + cy = 0 \) the interval of solution is always \((-\infty, \infty)\).

In standard form: \(y'' + \frac{b}{a}y' + \frac{c}{a}y = 0 \)

\(p(t) = \frac{b}{a} \), \(q(t) = \frac{c}{a} \), \(g(t) = 0 \) are constants so there are no discontinuities, so the interval of solution guaranteed by the Existence and Uniqueness Theorem is \((-\infty, \infty)\).

Sec. 3.2, Boyce & DiPrima, p.1
The operator \(L \)

The \(n \)th order linear o.d.e. \(y^{(n)} + p(t)y^{(n-1)} + q(t)y = g(t) \) can be represented using the **linear differential operator** \(L[y] = y^{(n)} + p(t)y^{(n-1)} + q(t)y \). Using the linear differential operator \(L[y] \) we can write \(y^{(n)} + p(t)y^{(n-1)} + q(t)y = g(t) \) as \(L[y] = g(t) \). The corresponding homogeneous equation can be written as \(L[y] = 0 \). Of course the exact composition of \(L[y] \) will vary from one linear o.d.e. to another.

Example 3. The o.d.e. \(\frac{d^2x}{dt^2} - e^t \frac{dx}{dt} + tx = \sin t \) could be written as \(L[x] = \sin t \). What is \(L \) in this case?

\[
L[x] = x'' - e^t x' + tx
\]

\(L[y] \) can be used to operate on functions.

Example 4. Given \(y^{(n)} - 5y' + 4y = 0 \).

a) Identify \(L[y] \) and use it to operate on \(y = e^{4t} \). Is \(y = e^{4t} \) a solution of \(L[y] = 0 \)?

\[
L[y] = y'' - 5y' + 4y \quad \text{Fm.} \quad y = e^{4t} \quad \begin{align*}
y' &= 4e^{4t} \\
y'' &= 16e^{4t}
\end{align*}
\]

So \(y = e^{4t} \) is a soln of \(L[y] = 0 \)

b) Find \(L[y] \).

\[
\begin{align*}
y &= e^{4t} \\
y' &= 4e^{4t} \\
y'' &= 16e^{4t}
\end{align*}
\]

Based on the result, we can conclude that \(y = t \) is a solution of \(L[y] = \frac{4t}{-5} \)

Example 5. Determine which, \(y_1(t) = t \) or \(y_2(t) = t^2 \), is a solution of \(y'' + \frac{1}{t}y' - 2y = 0 \), \(0 < t < \infty \)

\[
\begin{align*}
y_1(t) &= t \\
y_1' &= 1 \\
y_1'' &= 0
\end{align*}
\]

\[
\begin{align*}
y_2(t) &= t^2 \\
y_2' &= 2t \\
y_2'' &= 2
\end{align*}
\]

\[
L[y_1] = t^2 + \frac{1}{t} + 2t \quad \text{so} \quad y_1 = t \quad \text{is a soln of} \quad L[y] = 0
\]

\[
L[y_2] = t^2 + 2t + 2t - 2t^2 = 4t^2 \neq 0 \quad \text{so} \quad y_2 = t^2 \quad \text{is not a soln of} \quad L[y] = 0
\]

* The operator \(L \) is introduced in Section 3.2, pages 143–4 of our text.

† Sometimes \(L \) is represented using the **differential operator** \(D \). For example, \(Dx = x' \) and \(D^2x = x'' \). If \(x = e^t \), then \(Dx = 3e^t \) and \(D^2x = 9e^t \). We could also write \(D(e^t) = 3e^t \) and \(D^2(e^t) = 9e^t \). Using the \(D \) operator, \(L \) can be written as \(L = D^2 + p(t)D + q(t) \). The corresponding homogeneous differential equation can be written as \(L[y] = [D^2 + p(t)D + q(t)]y = 0 \).

Sec. 3.2, Boyce & DiPrima, p.2
The linear differential operator $L[y]$ satisfies the following principles:

1. **Principle of superposition**: $L[y_1 + y_2] = L[y_1] + L[y_2]$.

Example 6. If $L[y_1] = 3$ and $L[y_2] = 5$, what is $L[2y_1 + 5y_2]$?

\[
L[2y_1 + 5y_2] = 2L[y_1] + 5L[y_2] = 2 \cdot 3 + 5 \cdot 5 = 31
\]

Every linear operator satisfies the **principles of superposition and proportionality**. It is this fact of linear operators that provides the theoretical basis for writing a general solution of $y'' + p(t)y' + q(t)y = 0$ as a linear combination of the fundamental set of solutions.

The Wronskian of a fundamental set of solutions $\{y_1(t), y_2(t)\}$ of $y'' + p(t)y' + q(t)y = 0$ is defined as the determinant $W(y_1(t), y_2(t)) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$.

Example 7. Find the Wronskian of $\{e^t, e^{-2t}\}$.

\[
W = \begin{vmatrix} e^t & e^{-2t} \\ e^t & -2e^{-2t} \end{vmatrix} = e^t(-2e^{-2t}) - e^{-2t}e^t = -2 - 2 = -4
\]

Theorem. If y_1 and y_2 are two solutions of the differential equation $L[y] = y'' + p(t)y' + q(t)y = 0$ and if there is a point t_0 where the Wronskian of y_1 and y_2 is nonzero, then the family of solutions $y(t) = c_1y_1(t) + c_2y_2(t)$ includes every solution of $L[y] = y'' + p(t)y' + q(t)y = 0$.

We may generalize this theorem as follows: If the Wronskian of y_1 and y_2 is nonzero on some interval I then

1) The functions $\{y_1(t), y_2(t)\}$ form a fundamental set of solutions of $y'' + p(t)y' + q(t)y = 0$ on I, and
2) The general solution of $y'' + p(t)y' + q(t)y = 0$ is $y(t) = c_1y_1(t) + c_2y_2(t)$ with domain equal to I.

Example 8. On what interval I does the set $\{e^t, e^{-2t}\}$ form a fundamental set of solutions for $ay'' + by' + cy = 0$? What is the domain of the general solution?

\[(-\infty, \infty) \text{ because } W(e^t, e^{-2t}) \neq 0 \text{ for all } t.\]

Supplemental submit problem:

If $L[y] = t^2y'' - ty' + y$, find $g(t)$ for which $y = t^3$ is a solution of $L[y] = g(t)$.

Sec. 3.2, Boyce & DiPrima, p.3