Section 3.1, Second Order Linear Equations

A general 2nd order linear equation can be written: \(P(t)y'' + Q(t)y' + R(t)y = G(t) \).

To put this equation into standard form we divide by \(P(t) \) to obtain
\[
y'' + p(t)y' + q(t)y = g(t)
\]

This equation is nonhomogeneous if \(g(t) \neq 0 \) identically for all \(t \), and homogeneous if \(g(t) = 0 \). The nonhomogeneous term, \(g(t) \), is sometimes referred to as a “forcing function.”

Example 1. Which of the following o.d.e.s are linear? Of the linear equations, which are homogeneous?

<table>
<thead>
<tr>
<th>o.d.e.</th>
<th>linear?</th>
<th>homogeneous?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d^2y}{dt^2} + 2t^2y^2 = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{d^3y}{dx^3} = -y \sin x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t^2y'' - ty' - sint = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x\frac{d^2x}{dt^2} + t\frac{dx}{dt} = t)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constant Coefficient homogeneous 2nd order linear o.d.e.s

In the case where the coefficients of \(P(t)y'' + Q(t)y' + R(t)y = 0 \) are constants we have a constant-coefficient 2nd order homogeneous linear equation \(ay'' + by' + cy = 0 \).

Recall that the 1st order constant-coefficient homogeneous linear equation \(y' = ry \) has the general solution \(y(t) = ce^{rt} \). Analogously, it makes sense that solutions of second-order constant-coefficient linear homogeneous o.d.e.s will involve exponentials and will have two arbitrary constants.

Example 2. Assume that \(y = e^r \) is a solution of \(ay'' + by' + cy = 0 \). For what \(r \) values is this assumption valid?
As we saw in Example 3, \(ay'' + by' + cy = 0 \) has two solutions of the form \(y = e^{rt} \) corresponding to the two roots of the equation \(ar^2 + br + c = 0 \). The equation \(ar^2 + br + c = 0 \) is called the \textbf{characteristic equation} of \(ay'' + by' + cy = 0 \). It is easy to obtain the characteristic equation from \(ay'' + by' + cy = 0 \) by setting \(y'' = r^2, y' = r \) and \(y = 1 \).

Suppose the characteristic equation has two different real roots, \(r_1 \) and \(r_2 \). Then the two solutions corresponding to \(r_1 \) and \(r_2 \) are \(y_1 = e^{r_1 t} \) and \(y_2 = e^{r_2 t} \). We say that \(y_1 = e^{r_1 t} \) and \(y_2 = e^{r_2 t} \) form a \textbf{fundamental set of solutions} \{ \(e^{r_1 t}, e^{r_2 t} \) \}. Note the correlation between the fact that we began with a 2nd-order linear constant-coefficient homogeneous o.d.e and the fact that the fundamental set has two solutions. The \textbf{general solution} of \(ar^2 + br + c = 0 \) is a \textbf{linear combination} of the two solutions of the fundamental set, i.e., the general solution is \(y(t) = c_1 y_1 + c_2 y_2 \) or \(y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \).

\textit{Example 3.} Find the fundamental set and general solution of \(y'' - 5y' + 4y = 0 \).

\textit{Example 4.} Find the fundamental set and general solution of \(y'' = y \).

\footnote{Our text introduces the notion of fundamental set on page 148 but does not use set notation.}
Example 5. Find the specific solution of the initial value problem, \(y'' - 5y' = 0 \), \(y(0) = 1 \), \(y'(0) = 3 \). Determine the behavior of this solution as \(t \to \infty \).

Working backwards

Example 6. The general solution of the constant-coefficient \(ar^2 + br + c = 0 \) is \(y(t) = c_1 e^{-2t} + c_2 e^{2t} \). If \(a = 1 \), find \(b \) and \(c \).

Example 7. The fundamental set of \(ar^2 + br + c = 0 \) is \{1, e^{3t}\}. If \(a = 1 \), find \(b \) and \(c \).