Section 2.1, Linear Equations with Variable Coefficients

The method of integrating factors, due to Leibniz, is a technique for finding the general solution of a nonhomogeneous linear o.d.e.

A first order linear o.d.e. can be put into the form \(\frac{dy}{dt} + p(t)y = g(t) \). If \(g(t) \neq 0 \), this o.d.e. is said to be nonhomogeneous. If \(g(t) = 0 \), the o.d.e. is homogeneous.

To solve a first-order nonhomogeneous linear o.d.e. follow these steps:

1. Put into the form \(\frac{dy}{dt} + p(t)y = g(t) \). \((S)\)

 The integrating factor is defined to be \(\mu(t) = e^{\int p(t) dt} \).

 [Note: When evaluating the integral \(\int p(t) dt \) we do not need to add \(C \) because, when we multiply both sides of \((S)\) by the integrating factor in Step 2 below, these constants will cancel out.]

2. Multiply both sides of \((S)\) by \(\mu(t) \) to get

 \[\mu(t) \left(\frac{dy}{dt} + p(t)y \right) = \mu(t)g(t). \]

 \((M)\)

 Note that generally the left-hand side of \((M)\) cannot be integrated. The key to getting beyond this step is to recognize that the left-hand side of \((M)\) is actually the product rule derivative of \(\mu(t)y(t) \), i.e.,

 \(\frac{d}{dt} [\mu(t)y(t)] = \mu(t)[y' + p(t)y] \).

 \(\frac{d}{dt} [\mu(t)y(t)] \) can be integrated because it is a derivative.

 Thus we substitute \(\frac{d}{dt} [\mu(t)y(t)] \) for the left-hand side of \((M)\) to obtain

 \[\frac{d}{dt} [\mu(t)y(t)] = \mu(t)g(t). \]

 \((D)\)

3. Now integrate both sides of \((D)\), \(\int \frac{d}{dt} [\mu(t)y(t)] dt = \int \mu(t)g(t) dt + C \), to obtain the implicit general solution.

1 We can state this as a Lemma: \(\frac{d}{dt} [\mu(t)y(t)] = \mu(t)[y' + p(t)y] \).

The proof is as follows: \(\frac{d}{dt} [\mu(t)y(t)] = \mu(t)y'(t) + \mu'(t)y(t) \), where \(\mu'(t) = e^{\int p(t) dt} \). Note that

 \[\mu'(t) = \frac{d}{dt} e^{\int p(t) dt} = e^{\int p(t) dt} p(t) = \mu(t)p(t) \].

 Thus, \(\mu(t)y'(t) + \mu'(t)y(t) = \mu(t)y'(t) + \mu(t)p(t)y(t) = \mu(t)[y' + p(t)y] \).
Example 1. Find the general solution of $y' = y + e^t$.

1) Put in standard form: $y' - y = e^t$. $p(t) = -1$ so $\mu(t) = e^{\int -1 \, dt} = e^{-t}$

2) $e^{-t}(y' - y) = e^{-t}e^{-t} = 1$

3) $\frac{d}{dt} \left(e^{-t} y(t) \right) = \int 1 \, dt + C$

$y(t)e^{-t} = t + C$

$y(t) = (t + C)e^t$

Example 2. a) Find the general solution of $y' = \frac{2y}{t+1} + 3(t+1)^2$.

1) $y' - \frac{2y}{t+1} = 3(t+1)^2$

$\mu(t) = e^{\int \frac{2}{t+1} \, dt} = e^{2 \ln |t+1|} = e^{\ln |t+1|^2} = (t+1)^2$

2) $\frac{1}{(t+1)^2} \left(y - \frac{2y}{t+1} \right) = 3(t+1) \frac{1}{(t+1)^2} = 3$

$\frac{d}{dt} \left[\frac{1}{(t+1)^2} y(t) \right] = 3$

3) $\int \frac{d}{dt} \left[\frac{1}{(t+1)^2} y(t) \right] \, dt = 3 \int \, dt + C \Rightarrow \frac{y(t)}{(t+1)^2} = 3t + C$

$\Rightarrow y(t) = (3t + C)(t+1)^2$

b) Find the specific solution of $y' = \frac{2y}{t+1} + 3(t+1)^2$; $y(1) = 8$.

$y(1) = (3 + c) \cdot 1^2 = 8 \Rightarrow 4c = -4 \Rightarrow c = -1$

$\Rightarrow y(t) = (3t - 1)(t+1)^2$
Solving I.V.P.s for which the solution must be left in integral form (because the integral involved cannot be integrated)

Given \(y' + p(t)y = g(t), \quad y(t_0) = y_0. \)
1. Follow step 1 above to obtain the integrating factor.

2. Follow step 2 above, making the substitution to obtain the equation (D).

3. Set up the integrals of step 3 with \(t_0 \) as the lower limit and \(t \) as the upper limit. Do not add C. Change the name of the variable \(t \) in the integrand to another name (such as \(s \)).

\[
\int_s \frac{d}{ds} [\mu(s)x(s)]ds = \int_s \mu(s)g(s)ds.
\]
Evaluate the integrals (if possible). Substitute \(y_0 \) for \(y(t_0) \) in the antiderivative of the left-hand integral.

Note: If it is not possible to obtain a closed-form antiderivative of either integral, a numerical approach will be required - or use your calculator to obtain the value of the integral for specified values of \(t \).

Example 3. Find the specific solution of \(y' = 1 + 2ty, \quad y(0) = 3. \)

1) \(y' - 2ty = 1 \quad \Rightarrow \quad p(t) = -2t \quad \Rightarrow \quad \mu(t) = e^{\int -2tdt} = e^{-t^2} \)

2) \(e^{-t^2} (y' + 2ty) = e^{-t^2} \quad \Rightarrow \quad \text{cannot integrate} \)

\[
\frac{d}{dt} \left[e^{-t^2} y(t) \right] = e^{-t^2}
\]

3) \(\int_s^t \frac{d}{ds} [e^{-s^2} y(s)]ds = \int_s^t e^{-s^2} ds \quad \Rightarrow \quad \int_s^t e^{-s^2} ds \quad \Rightarrow \quad e^{-s^2} y(s) - y(s) = \int_s^t e^{-s^2} ds \)

\(\Rightarrow \quad e^{-t^2} y(t) = \int_s^t e^{-s^2} ds + 3 \quad \Rightarrow \quad y(t) = e^{t^2} \left[\int_s^t e^{-s^2} ds + 3 \right] \)

Graph of the specific solution of \(y' = 1 + 2ty, \quad y(0) = 3. \)

Boyce & DiPrima, Section 2.1 lecture, p. 3