Decimal answers should be rounded to three places to the right of the decimal point.
Word problems should include units in your answers.

Q1: The price-demand and total cost functions for the production and sale of x sweatshirts are

$$p = 36 - 0.03x \quad \quad C(x) = 6x + 750$$

A. What is the total revenue function?

$$R(x) = x \cdot p = 36x - 0.03x^2$$

B. What is the total profit function?

$$P(x) = p(x) - C(x) = 36x - 0.03x^2 - (6x + 750) = 30x - 0.03x^2 - 750$$

C. Use only the values below and marginal analysis to find the answers to 1–3

$$P(250) = 4,875 \quad P'(250) = 15 \quad P(250) = 19.50 \quad P'(250) = -0.018$$

1. Approximate the profit from the sale of the 251st sweatshirt. Answer: 15

2. Approximate the average profit from the sale of 251 sweatshirts. Answer: 19.482

$$19.50 + (-0.018) = 19.482$$

3. Approximate the total profit from the sale of 255 sweatshirts. Answer: $4,950$

$$P(255) \approx P(250) + P'(250) \cdot 5 = 4,875 + 15 \cdot 5 = 4,950$$

Q2: The function $Z(t)$ models the ozone level Z, measured in parts per billion (ppb), on a hot summer day, where t is time in hours and $t = 0$ corresponds to 9 am. Write a single statement that interprets these values:

$$Z(3) = 107 \quad Z'(3) = 6$$

At noon the ozone level is 107 ppb and is increasing at a rate of $6 \frac{ppb}{hr}$.
Q3: A cesium isotope has a half-life of 30 years. What is the continuous compound rate of decay?

\[Q = Q_0 e^{rt} \]

\[\frac{1}{2} Q_0 = Q_0 e^{30r} \]

\[\frac{1}{2} = e^{30r} \]

\[\ln \left(\frac{1}{2} \right) = 30r \]

\[r = \frac{\ln \left(\frac{1}{2} \right)}{30} = -0.0231 \]

B. Circle all true statements about the function \(f(t) = e^{-t} \)

1. The domain of \(f(t) \) is all Real numbers.
2. \(f'(t) < 0 \) on the entire domain of \(f(t) \).
3. \(f''(t) < 0 \) on the entire domain of \(f(t) \).
4. \(\lim_{t \to \infty} f(t) = 0 \)

Q4: Related Rates: A block of ice, in the shape of a cube, is hung from a hook in a room. If the ice is melting uniformly, so that the shape of the block is always a cube, both the length of a side of the cube and the volume of the cube are changing.

If the length of a side is decreasing at a rate of 2 inches per hour, at what rate is the volume of the cube changing when each side is 10 inches long?

A. What is the equation that relates the volume, \(V \), and \(s \), the length of each side?

Equation: \(V = s^3 \)

(If you don't know, I will sell it to you for two points).

B. Rewrite the statement of the problem using correct notation:

Given \(\frac{ds}{dt} = -2 \) \(\text{in/hr} \) find \(\frac{dV}{dt} \) when \(s = 10 \)

C. Solve.

\[\frac{dV}{dt} = 3 s^2 \cdot \frac{ds}{dt} \]

\[\frac{dV}{dt} = 3(10)^2 (-2) = -600 \text{ in}^3/\text{hr} \]
Q5: Given the information about $f(x)$, $f'(x)$ and $f''(x)$ in the three charts below, sketch a graph of the function $f(x)$, which is continuous on $(-\infty, \infty)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-2</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

$f'(x)$: $++ 0 -- \text{ND} + + 0 + +$

$f(x)$:

-2 0 2

$f''(x)$: $-- -- \text{ND} -- 0 + +$

$f(x)$:

0 2

Graph of $f(x)$ showing critical points and intervals of increase and decrease.
Q6: Answer the questions about the unknown function \(f(x) \) whose first and second derivatives are:

\[
\begin{align*}
 f'(x) &= 4x^3 - 12x^2 \\
 &= 4x^2(x - 3) \\
 &= 0, \quad x = 3
\end{align*}
\]

\[
\begin{align*}
 f''(x) &= 12x^2 - 24x \\
 &= 12x(x - 2) \\
 &= 0, \quad x = 2
\end{align*}
\]

A. Compete a sign chart for \(f'(x) = 4x^3 - 12x^2 \)

B. Compete a sign chart for \(f''(x) = 12x^2 - 24x \)

C. Using your information in A & B, answer the following. Your answers must be consistent with A & B.

1. At what value(s) of \(x \) does \(f(x) \) have a local maximum? \[\underline{\text{no local maximum}} \]
2. On what interval(s) is \(f(x) \) increasing? \[(3, +\infty) \]
3. At what value(s) of \(x \) does \(f(x) \) have a point of inflection? \[0, 2 \]
4. On what interval(s) is \(f(x) \) concave up? \[(-\infty, 0) \cup (2, +\infty) \]
Decimal answers should be rounded to three places to the right of the decimal point. Word problems should include units in your answers.

Q1: The price-demand and total cost functions for the production and sale of \(x \) sweatshirts are
\[
p = 36 - 0.03x \quad C(x) = 6x + 750
\]

A. What is the total revenue function?
\[
R(x) = x \cdot p = 36x - 0.03x^2
\]

B. What is the total profit function?
\[
P(x) = R(x) - C(x) = 36x - 0.03x^2 - (6x + 750) = 30x - 0.03x^2 - 750
\]

C. Use only the values below and marginal analysis to find the answers to 1 - 3

\[
P(300) = 5,550 \quad P'(300) = 12 \quad \bar{P}(300) = 18.50 \quad \bar{P}'(300) = -.022
\]

1. Approximate the profit from the sale of the 301st sweatshirt. Answer: \(\$12 \)

2. Approximate the average profit from the sale of 301 sweatshirts. Answer: \(\$18.478 \)

\[
\bar{P}(301) = \bar{P}(300) + \bar{P}'(300)
\]

\[
= 18.50 - .022
\]

3. Approximate the total profit from the sale of 305 sweatshirts. Answer: \(\$5,610 \)

\[
P(305) \approx \bar{P}(300) + P'(300) \cdot 5
\]

\[
= 5,550 + 12.5 = 5,610
\]

Q2: The function \(Z(t) \) models the ozone level \(Z \), measured in parts per billion (ppb), on a hot summer day, where \(t \) is time in hours and \(t = 0 \) corresponds to 9 am. Write a single statement that interprets these values:

\[
Z(4) = 112 \quad Z'(3) = 4
\]

At 1 pm the ozone level is 112 ppb and is increasing at a rate of 4 ppb per hour.
Q3: A cesium isotope has a half-life of 25 years. What is the continuous compound rate of decay?

\[Q = Q_0 e^{rt} \]

\[\frac{1}{2} Q_0 = Q_0 e^{25r} \]

\[\frac{1}{2} = e^{25r} \]

\[\ln \frac{1}{2} = 25r \]

\[r = \frac{\ln \frac{1}{2}}{25} \]

\[r = -0.0277 \]

B. Circle all true statements about the function \(f(t) = e^{-t} \)

1. The domain of \(f(t) \) is all Real numbers.
2. \(f'(t) > 0 \) on the entire domain of \(f(t) \).
3. \(f''(t) > 0 \) on the entire domain of \(f(t) \).
4. \(\lim_{t \to -\infty} f(t) = \infty \)

Q4: Related Rates: A block of ice, in the shape of a cube, is hung from a hook in a room. If the ice is melting uniformly, so that the shape of the block is always a cube, both the length of a side of the cube and the volume of the cube are changing.

If the length of a side is decreasing at a rate of 2 inches per hour, at what rate is the volume of the cube changing when each side is 10 inches long?

A. What is the equation that relates the volume, \(V \), and \(s \), the length of each side?

Equation: \(V = s^3 \)

(If you don't know, I will sell it to you for two points).

B. Rewrite the statement of the problem using correct notation:

Given \(\frac{ds}{dt} = -2 \) in/hr find \(\frac{dV}{dt} \) when \(s = 10 \)

C. Solve.

\[\frac{dV}{dt} = 3s^2 \cdot \frac{ds}{dt} \]

\[\frac{dV}{dt} = -600 \text{ in}^3/\text{hr} \]

\[\frac{dV}{dt} = 3(10)^2 (-2) \]

\[\frac{dV}{dt} = -600 \]
Q5: Given the information about \(f(x), f'(x) \) and \(f''(x) \) in the three charts below, sketch a graph of the function \(f(x) \), which is continuous on \((-\infty, \infty)\).

\[
\begin{array}{c|c|c|c|c|c}
 x & -4 & -2 & 0 & 2 & 4 \\
 \hline
 f(x) & 4 & 2 & -1 & 3 & -1 \\
\end{array}
\]

\[
f'(x) - - 0 -- \text{ND} + 0 - - \\
f(x) -2 \circ 0 \circ 2
\]

\[
f''(x) + 0 -- \text{ND} - - - \\
f(x) -2 0
\]
Q6: Answer the questions about the unknown function $f(x)$ whose first and second derivatives are:

$$f'(x) = 4x^3 - 12x^2$$

$$f''(x) = 12x^2 - 24x$$

A. Compete a sign chart for $f'(x) = 4x^3 - 12x^2$

<table>
<thead>
<tr>
<th>f'</th>
<th>$-$</th>
<th>$-$</th>
<th>$+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>$-$</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

$$f''(x) = 12x(x-2)$$

$$f'' = 0 \implies x = 0, x = 2$$

B. Compete a sign chart for $f''(x) = 12x^2 - 24x$

<table>
<thead>
<tr>
<th>f''</th>
<th>$-$</th>
<th>$-$</th>
<th>$+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$-$</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>$-$</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

C. Using your information in A & B, answer the following. Your answers must be consistent with A & B.

1. At what value(s) of x does $f(x)$ have a local minimum? $x = 3$

2. On what interval(s) is $f(x)$ decreasing? $(-\infty, 3)$ or $(-\infty, 0) \cup (0, 3)$

3. At what value(s) of x does $f(x)$ have a point of inflection? $x = 0, 2$

4. On what interval(s) is $f(x)$ concave down? $(0, 2)$