Where appropriate, and whether or not you are using the MATH SOLVER, you must
- Name the formula
- List the values that are inserted into each of the formula's variables
- Box the variable that you solved for
- Place your labeled answer in the box to the right. Monetary values should be rounded to the nearest penny. Other decimal answers should be rounded to four significant digits to the right of the decimal point.
- If you are not using the MATH SOLVER, you may use scratch paper to do your calculations.

Q1: Expected Value: A card is drawn from a standard 52-card deck. If the card is an Ace, you win $10; otherwise, you lose $1. Set up the payoff table and find the expected value of the game.

<table>
<thead>
<tr>
<th>x_i</th>
<th>p_i</th>
<th>$10(\frac{1}{13}) + (-1)(\frac{12}{13}) = \frac{-2}{13}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.52</td>
<td>0.48</td>
</tr>
<tr>
<td>-1</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

\[E(X) = 0.154 \]

Q2: What is the annual percentage yield for money invested at
A. 9.3% compounded semiannually? 0.9516
B. 9% compounded continuously? 0.9426
C. Which is the better investment? A or 9.3% compounded semiannually.

A. Formula: \(A P Y \)
Ans: 0.9522 = 9.52%
B. Formula: \(C A P Y \)
Ans: 0.9426 = 9.42%
C. \(9.3\% \) compounded semiannually.

Q3: At what annually compounded rate must money be invested, if it is to double in 5 years?

\[\text{If } A = 2, \quad t = 5, \quad P = 1, \quad \text{then } \quad R = \frac{A}{P}^{1/5} - 1 \]

\[R = \text{annual rate} \]
Ans: 9.488% or 9.49%

Q4: Rental costs for office space have been going up at 4.8% per year compounded annually for the past 5 years. If office space is now $35 per square foot, what were the rental rates 5 years ago?

\[A = 35 \]
\[P = P \cdot 1.048 \]
\[1 = 0.48 \]
\[N = 5 \]
Q5: If $2,000 is deposited each quarter into an ordinary annuity paying 8% compounded quarterly.

A. Complete the balance sheet for the first three quarters.

<table>
<thead>
<tr>
<th>period</th>
<th>deposit</th>
<th>interest</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,000</td>
<td>0.00</td>
<td>2,000</td>
</tr>
<tr>
<td>2</td>
<td>2,000</td>
<td>0.02 (2000)</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>2,000</td>
<td>0.02 (4,080)</td>
<td>80.80</td>
</tr>
</tbody>
</table>

B. When will the account have a value of $100,000?

\[F = 100,000 \]
\[S = 2000 \]
\[I = \frac{.08}{4} = .02 \]
\[N = 35.003 \]

Q6: The Hartford offered an annuity that pays 4.8% compounded monthly. What equal monthly deposit should be made into this annuity in order to have $50,000 in 10 years?

\[F = 50,000 \]
\[S = 325.453 \]
\[I = \frac{.048}{12} \]
\[N = 10 \times 12 = 120 \]

Q7: A stock trading company charges a commission of \$20 + 1% of the principal for both the purchase and sale of stocks. An investor purchases 200 shares at $21.50 a share, holds the shares for 26 weeks, and then sells the stock for $25.00 a share. Find the annual rate of interest earned with this investment.

\[\text{paid} = 200 \times 21.50 + (20 + 0.1 \times 4300) \]
\[= 4300 + 6.3 \]
\[= 4306.3 \]

\[\text{revenue} = 200 \times 25 - (20 + 0.1 \times 5000) \]
\[= 5000 - 70 \]
\[= 4930 \]

\[A = 4930 \]
\[P = 4363 \]
\[R = .2599 \]
\[T = .5 \]
Q8: A retiree has an annuity that pays 5.6% compounded quarterly with a current balance of $30,000. He wants to make equal quarterly withdrawals so that at the end of 5 years the account balance is $0.

A. What is the value of each withdrawal?
B. How much interest was earned during the first year?

Formula: \(PV \)

A. Ans: \($3,673.20 \)
B. Ans: \($75.13 \)

Q9: A family has a $150,000, 20-year mortgage at 6% compounded monthly.

A. Complete the amortization table for the first two payments.

<table>
<thead>
<tr>
<th>Period</th>
<th>Payment</th>
<th>interest (0.005) (unpaid bal)</th>
<th>reduction on unpaid balance</th>
<th>unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150,000</td>
</tr>
<tr>
<td>1</td>
<td>1074.65</td>
<td>750</td>
<td>324.65</td>
<td>149,675.35</td>
</tr>
<tr>
<td>2</td>
<td>1074.65</td>
<td>748.30</td>
<td>326.37</td>
<td>149,349.98</td>
</tr>
</tbody>
</table>

B. After 5 full years of payments, what is the unpaid balance of the mortgage?
C. How much interest is paid during the 20 years?

B. \(PV = 127349.34 \)
\(S = 1074.65 \)
\(\Sigma = 0.005 \)
\(N = 240 - 5(12) = 180 \)

C. \(\text{Total paid} = 1074.65(240) = 257916.00 \)
\(\text{Interest} = \text{Total paid} - 150000 = 107916 \)
Where appropriate, and whether or not you are using the MATH SOLVER, you must
• Name the formula
• List the values that are inserted into each of the formula’s variables
• Box the variable that you solved for
• Place your labeled answer in the box to the right. Monetary values should be rounded to the nearest penny. Other decimal answers should be rounded to four significant digits to the right of the decimal point.
• If you are not using the MATH SOLVER, you may use scratch paper to do your calculations.

Q1: Expected Value: A card is drawn from a standard 52-card deck. If the card is an heart, you win $5; otherwise, you lose $1. Set up the payoff table and find the expected value of the game to you.

<table>
<thead>
<tr>
<th>x_i</th>
<th>5</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>\frac{13}{52} = \frac{1}{4}</td>
<td>\frac{39}{52} = \frac{3}{4}</td>
</tr>
</tbody>
</table>

\[E(X) = \frac{1}{4} \cdot 5 + \frac{3}{4} \cdot (-1) = \frac{2}{4} - \frac{3}{4} = \frac{2}{4} - \frac{1}{2} \]

Q2: What is the annual percentage yield for money invested at

A. 8% compounded continuously?
B. 8.1% compounded semiannually?

C. Which is the better investment?

A. Formula: \(\text{CAPY} \)
\[E = \frac{0.8264}{M} \]
\[R = 0.081 \]
\[M = 2 \]

B. Formula: \(\text{APY} \)
\[E = \frac{0.08328}{R} \]
\[R = 0.08 \]

Q3: At what annually compounded rate must money be invested, if it is to double in 6 years?

\[A = 2000 \text{ or } 2000 \text{ e}^{rT} \]
\[P = 100 \text{ or } 100 \text{ e}^{rT} \]
\[\frac{R}{T} = 1 \]

Q4: Rental costs for office space have been going up at 3.8% per year compounded annually for the past 5 years. If office space is now $25 per square foot, what were the rental rates 5 years ago?

\[A = 25 \]
\[P = \text{25 e}^{0.038} \]
\[R = 0.38 \]
\[T = 5 \]
Q5: A stock trading company charges a commission of **$20 + 1% of the principal** for both the purchase and sale of stocks. An investor purchases 200 shares at $18.50 a share, holds the shares for 26 weeks, and then sells the stock for $22.00 a share. Find the annual rate of interest earned with this investment.

```
purchase: 200 (18.50) + commission = 3754

receives: 200 (22) - commission = 4336
```

Formula: \(S = \frac{1}{1 + \frac{r}{100}} \)

An: \(S_{0.082} = 30.8\% \)

\[A = \frac{4336}{3754} \]
\[p = 3.757 \]
\[R = 3.082 \]
\[T = 0.5 \]

Q6: If $4,000 is deposited each quarter into an ordinary annuity paying 8% compounded quarterly.

A. Complete the balance sheet for the first three quarters.

<table>
<thead>
<tr>
<th>period</th>
<th>deposit</th>
<th>interest</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,000.00</td>
<td>0.00</td>
<td>4,000.00</td>
</tr>
<tr>
<td>2</td>
<td>4,000.00</td>
<td>.02 (4000)</td>
<td>8,080.00</td>
</tr>
<tr>
<td>3</td>
<td>4,000.00</td>
<td>.02 (8080)</td>
<td>12,241.60</td>
</tr>
</tbody>
</table>

B. When will the account have a value of $100,000?

\[F = 100,000 \]
\[S = 400 \]
\[I = \frac{.08}{4} = .02 \]
\[N = \text{?} \]

Q7: The Hartford offered an annuity that pays 5.5% compounded semiannually. What equal semi-annual deposit should be made into this annuity in order to have $80,000 in 10 years?

\[FV = 80,000 \]
\[S = 3053.74 \]
\[I = .055/2 = .0275 \]
\[N = 10 \times 2 = 20 \]
Q8: A retiree has an annuity that pays 5.2% compounded quarterly with a current balance of $30,000. He wants to make equal quarterly withdrawals so that at the end of 5 years the account balance is $0.

A. What is the value of each withdrawal?

B. How much interest was earned during the first year?

B. PV = 30,000

\[S = 17\text{,}13\text{.}12 \]

\[R = .052/4 = .013 \]

\[N = 5 \times 4 = 20 \]

B. After 1 yr, \(N = 16 \) and \(PV = 24,603.44 \)

\[\therefore \text{Account value decreased} (30,000 - 24,603.44) = 5,396.56. \]

\[\therefore \text{He received} 17\text{,}13\text{.}12 \times 4 = 68,524.48 \]

\[\therefore \text{Interest} = 68,524.48 - 5,396.56 = \$14,555.92 \]

Q9: A family has a $200,000, 20-year mortgage at 6% compounded monthly.

A. Complete the amortization table for the first two payments.

<table>
<thead>
<tr>
<th>Period</th>
<th>Payment</th>
<th>interest</th>
<th>reduction on unpaid balance</th>
<th>unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200,000</td>
</tr>
<tr>
<td>1</td>
<td>1432.86</td>
<td>819.20</td>
<td>433.64</td>
<td>199,569.14</td>
</tr>
<tr>
<td>2</td>
<td>1432.86</td>
<td>997.84</td>
<td>434.02</td>
<td>199,132.12</td>
</tr>
</tbody>
</table>

B. After 5 full years of payments, what is the unpaid balance of the mortgage?

B. \(\bar{P} = 169,799.20 \)

\[S = 1432.86 \times 2 \]

\[I = .005 \]

\[N = 240 - 5(12) = 180 \text{ payments left} \]

A. \(\text{Paid} - 200,000 = 1432.86 \times 240 - 200,000 \]

\[= 343,886.40 - 200,000 \]

\[= 143,886.40 \]
Where appropriate, and whether or not you are using the MATH SOLVER, you must

- Name the formula
- List the values that are inserted into each of the formula’s variables
- Box the variable that you solved for
- Place your labeled answer in the box to the right. Monetary values should be rounded to the nearest penny. Other decimal answers should be rounded to three significant digits to the right of the decimal.
- If you are not using the MATH SOLVER, you may use scratch paper to do your calculations.

Q1: Expected Value: A card is drawn from a standard 52-card deck. If the card is an Ace, you win $10; otherwise, you lose $1. Set up the payoff table and find the expected value of the game.

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(p_i)</th>
</tr>
</thead>
</table>

\[E(X) = \] 6

Q2: What is the annual percentage yield for money invested at

A. 9.3% compounded semiannually?
B. 9% compounded continuously?
C. Which is the better investment? ______

A. Formula ________
Ans: ______________
B. Formula:__________
Ans:________________

Q3: At what annually compounded rate must money be invested, if it is to double in 5 years?

Formula __________
Ans: _____________

Q4: Rental costs for office space have been going up at 4.8% per year compounded annually for the past 5 years. If office space is now $35 per square foot, what were the rental rates 5 years ago?

Formula __________
Ans: _____________
Q5: If $2,000 is deposited each quarter into an ordinary annuity paying 8% compounded quarterly,
 A. Complete the balance sheet for the first three quarters.

<table>
<thead>
<tr>
<th>period</th>
<th>deposit</th>
<th>interest</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,000.00</td>
<td>0.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. When will the account have a value of $100,000?

Formula ______
Ans: ________________

Q6: The Hartford offered an annuity that pays 4.8% compounded monthly. What equal monthly deposit should be made into this annuity in order to have $50,000 in 10 years?

Formula ______
Ans: ________________

Q7: A stock trading company charges a commission of $20 + 1% of the principal for both the purchase and sale of stocks. An investor purchases 200 shares at $21.50 a share, holds the shares for 26 weeks, and then sells the stock for $25.00 a share. Find the annual rate of interest earned with this investment.

Formula: ____________
Ans: _________________
Q8: A retiree has an annuity that pays 5.6% compounded quarterly with a current balance of $30,000. He wants to make equal quarterly withdrawals so that at the end of 5 years the account balance is $0.
 A. What is the value of each withdrawal?
 B. How much interest was earned during the first year?

<table>
<thead>
<tr>
<th>Period</th>
<th>Payment</th>
<th>interest</th>
<th>reduction on unpaid balance</th>
<th>unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150,000</td>
</tr>
<tr>
<td>1</td>
<td>1074.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1074.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q9: A family has a $150,000, 20-year mortgage at 6% compounded monthly.
 A. Complete the amortization table for the first two payments.
 B. After 5 full years of payments, what is the unpaid balance of the mortgage?
 C. How much interest is paid during the 20 years?

 Formula: ____________
 B. Ans: ____________
 C. Ans: ____________
Where appropriate, and whether or not you are using the MATH SOLVER, you must

- Name the formula
- List the values that are inserted into each of the formula’s variables
- Box the variable that you solved for
- Place your labeled answer in the box to the right. Monetary values should be rounded to the nearest penny. Other decimal answers should be rounded to three significant digits to the right of the decimal.
- If you are not using the MATH SOLVER, you may use scratch paper to do your calculations.

Q1: Expected Value: A card is drawn from a standard 52-card deck. If the card is an heart, you win $5; otherwise, you lose $1. Set up the payoff table and find the expected value of the game to you.

\[
\begin{array}{|c|c|}
\hline
x_i & \ \ \\
\hline
p_i & \ \ \\
\hline
\end{array}
\]

\[E(X) = \text{__________} \]

Q2: What is the annual percentage yield for money invested at

A. 8% compounded continuously?
B. 8.1% compounded semiannually?

C. Which is the better investment? _____

A. Formula ______
 Ans: ________________
B. Formula:__________
 Ans:________________

Q3: At what annually compounded rate must money be invested, if it is to double in 6 years?

Formula ______
Ans: ________________

Q4: Rental costs for office space have been going up at 3.8% per year compounded annually for the past 5 years. If office space is now $25 per square foot, what were the rental rates 5 years ago?

Formula ______
Ans: ________________
Q5: A stock trading company charges a commission of $20 + 1% of the principal for both the purchase and sale of stocks. An investor purchases 200 shares at $18.50 a share, holds the shares for 26 weeks, and then sells the stock for $22.00 a share. Find the annual rate of interest earned with this investment.

Formula: __________

Ans: ______________

Q6: If $4,000 is deposited each quarter into an ordinary annuity paying 8% compounded quarterly,

A. Complete the balance sheet for the first three quarters.

<table>
<thead>
<tr>
<th>period</th>
<th>deposit</th>
<th>interest</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,000.00</td>
<td>0.00</td>
<td>4,000.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. When will the account have a value of $100,000?

Formula _______

B. Ans: ______________

Q7: The Hartford offered an annuity that pays 5.5% compounded semiannually. What equal semi-annual deposit should be made into this annuity in order to have $80,000 in 10 years?

Formula __________

Ans: ______________
Q8: A retiree has an annuity that pays 5.2% compounded quarterly with a current balance of $30,000. He wants to make equal **quarterly** withdrawals so that at the end of 5 years the account balance is $0.

A. What is the value of each withdrawal?
B. How much interest was earned during the first year?

<table>
<thead>
<tr>
<th>Period</th>
<th>Payment</th>
<th>interest</th>
<th>reduction on unpaid balance</th>
<th>unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200,000</td>
</tr>
<tr>
<td>1</td>
<td>1432.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1432.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q9: A family has a $200,000, 20–year mortgage at 6% compounded monthly.

A. Complete the amortization table for the first two payments.

B. After 5 full years of payments, what is the unpaid balance of the mortgage?
C. How much interest is paid during the 20 years?