Q1: An ordinary annuity earns 7.44% compounded monthly. Answer questions A & B, which refer to one person's investment. Answer B depends on A.

A. A person decides to deposit $100 each month for 30 years. How much is in the account after 30 yrs?

Formula: \(FV = \frac{F}{I} \)

\[
\begin{align*}
F &= 133,136.999 \\
S &= 100 \\
I &= 0.0744/12 = 0.0062 \\
N &= 30 \times 12 = 360 \\
\text{Answer:} &\quad \$133,136.00
\end{align*}
\]

B. After 30 years, the person decides to make equal monthly withdrawals from the account for the next 15 years, reducing the balance to 0. What are the monthly withdrawals?

Formula: \(PV = \frac{S}{I} \)

\[
\begin{align*}
S &= 1,229.66 \\
I &= 0.0062 \\
N &= 15 \times 12 = 180 \\
\text{Answer:} &\quad \$1,229.66
\end{align*}
\]

Q2: A second person decides to deposit $100 each month into an ordinary annuity at an unknown nominal rate. After 30 years this person decides to make equal monthly withdrawals of $1350 from the annuity for 15 years, after which the balance is zero. Over the 45 year period, how much interest does the account earn?

\[
\begin{align*}
\text{Deposits} &= 100 \times 360 = 36,000 \\
\text{Withdrawals} &= 1350 \times 180 = 243,000 \\
\text{Withdrawals} - \text{Deposits} &= \frac{\text{Withdrawals}}{\text{Deposits}} \\
243,000 - 36,000 &= 180,000
\end{align*}
\]

Q3: A couple takes out a $120,000 mortgage at 7.2% compounded monthly and amortized over 15 years. Their monthly payment is $1092.06.

A. Fill in the first two rows of the amortization table:

<table>
<thead>
<tr>
<th>Pay #</th>
<th>Payment</th>
<th>Interest</th>
<th>Reduction in unpaid bal.</th>
<th>Unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120,000</td>
</tr>
<tr>
<td>1</td>
<td>1092.06</td>
<td>72.0</td>
<td>372.06</td>
<td>119,627.94</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Unpaid balance} &= 120,000 - (1092.06 \times 2) = 120,000 - 372.06 \\
&= 119,627.94
\end{align*}
\]

B. What is the unpaid balance after 10 years of payments? Indicate how you found the answer.

Setting \(N = 60 \), because 60 payments are left, we find \(PV = \$54,889.07 \).
Q1: An ordinary annuity earns 8.4% compounded monthly. Answer questions A & B, which refer to one person's investment. Answer B depends on A.

A. A person decides to deposit $100 each month for 30 years. How much is in the account after 30 yrs?

<table>
<thead>
<tr>
<th>Formula: FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = 161,713.755$</td>
</tr>
<tr>
<td>$S = 100$</td>
</tr>
<tr>
<td>$t = .084/12 = .007$</td>
</tr>
<tr>
<td>$N = 30 \times 12 = 360$</td>
</tr>
<tr>
<td>Answer: $161,713.76$</td>
</tr>
</tbody>
</table>

B. After 30 years, the person decides to make equal monthly withdrawals from the account for the next 15 years, reducing the balance to 0. What are the monthly withdrawals?

<table>
<thead>
<tr>
<th>Formula: PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = 161,713.76$</td>
</tr>
<tr>
<td>$S = 1582.994$</td>
</tr>
<tr>
<td>$t = .084/12 = .007$</td>
</tr>
<tr>
<td>$N = 15 \times 12 = 180$</td>
</tr>
<tr>
<td>Answer: 1582.99</td>
</tr>
</tbody>
</table>

Q2: A second person decides to deposit $100 each month for 30 years into an ordinary annuity at an unknown nominal rate. After 30 years, this person decides to make equal monthly withdrawals of $1250 from the annuity for 15 years, after which the balance is zero. Over the 45 year period, how much interest does the account earn?

$$\text{Interest} = \text{Withdrawals} - \text{Deposits}$$

$$= (1250)(180) - (100)(360)$$

$$= 2,250,000 - 36,000$$

$$= \$\,189,000$$

Q3: A couple takes out a $100,000 mortgage at 7.2% compounded monthly and amortized over 15 years. Their monthly payment is $910.05

A. Fill in the first two rows of the amortization table:

<table>
<thead>
<tr>
<th>Pay #</th>
<th>Payment</th>
<th>Interest</th>
<th>Reduction in unpaid bal.</th>
<th>Unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>100,000</td>
</tr>
<tr>
<td>1</td>
<td>910.05</td>
<td>600</td>
<td>310.05</td>
<td>99,689.95</td>
</tr>
</tbody>
</table>

B. What is the unpaid balance after 10 years of payments? Indicate how you found the answer.

After 10 years, 60 payments are left (180 - 120)

$$\text{Accept } 45,740.89 \quad (\text{if } S = 910.05\text{ exactly})$$
Q1: An ordinary annuity earns 7.44% compounded monthly. Answer questions A & B, which refer to one person's investment. Answer B depends on A.

A. A person decides to deposit $100 each month for 30 years. How much is in the account after 30 yrs?

Formula: ________

Answer: ________

B. After 30 years, the person decides to make equal monthly withdrawals from the account for the next 15 years, reducing the balance to 0. What are the monthly withdrawals?

Formula: ________

Answer: ________

Q2: A second person decides to deposit $100 each month for 30 years into an ordinary annuity at an unknown nominal rate. After 30 years, this person decides to make equal monthly withdrawals of $1350 from the annuity for 15 years, after which the balance is zero. Over the 45 year period, how much interest does the account earn?

Q3: A couple takes out a $120,000 mortgage at 7.2% compounded monthly and amortized over 15 years. Their monthly payment is $1092.06

A. Fill in the first two rows of the amortization table:

<table>
<thead>
<tr>
<th>Pay #</th>
<th>Payment</th>
<th>Interest</th>
<th>Reduction in unpaid bal.</th>
<th>Unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>120,000</td>
</tr>
<tr>
<td>1</td>
<td>1092.06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. What is the unpaid balance after 10 years of payments. Indicate how you found the answer.
Q1: An ordinary annuity earns 8.4% compounded monthly. Answer questions A & B, which refer to one person's investment. Answer B depends on A.

A. A person decides to deposit $100 each month for 30 years. How much is in the account after 30 yrs?

Formula:

Answer:

B. After 30 years, the person decides to make equal monthly withdrawals from the account for the next 15 years, reducing the balance to 0. What are the monthly withdrawals?

Formula:

Answer:

Q2: A second person decides to deposit $100 each month for 30 years into an ordinary annuity at an unknown nominal rate. After 30 years, this person decides to make equal monthly withdrawals of $1250 from the annuity for 15 years, after which the balance is zero. Over the 45 year period, how much interest does the account earn?

Q3: A couple takes out a $100,000 mortgage at 7.2% compounded monthly and amortized over 15 years. Their monthly payment is $910.05

A. Fill in the first two rows of the amortization table:

<table>
<thead>
<tr>
<th>Pay #</th>
<th>Payment</th>
<th>Interest</th>
<th>Reduction in unpaid bal.</th>
<th>Unpaid balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>100,000</td>
</tr>
<tr>
<td>1</td>
<td>910.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. What is the unpaid balance after 10 years of payments. Indicate how you found the answer.