4.1 - Review: Systems of Linear Equations in Two Variables

Read pages 176 – 18

Homework: 1 – 29 (odd), 35, 37, 39, 53, 55

How to solve a system of linear equations of the form \(ax + by = h \)
\(cx + dy = k \)

1. Graphically (by hand or with a graphing utility)
2. Algebraically
 - Use substitution
 - Use elimination by addition
3. Use Matrices (Section 4.2)

Classifications of systems of linear equations:

A. If the system has one or more solutions, we say it is consistent.
 - If there is exactly one solution, the system is independent
 - If there are infinitely many solutions, the system is dependent
 In this case let \(x = k \) to get the solution \(y = f (k) \) (\(k \) is called a parameter).
 Replacing \(k \) with a real number produces a particular solution of the form \((k, f (k)) \).
B. If the system has no solutions we say it is inconsistent.

Q1: Solve the system of linear equations

\[
\begin{align*}
 x - 2y &= -8 \\
 2x + y &= 9
\end{align*}
\]

A. Graphically

B. Using substitution
 1. Using one equation, solve for one variable.
 2. Substitute for solved variable in 2nd equation.

Classify ______________________________
C. Using elimination by addition.
A system of linear equations is transformed into an equivalent system if
- Two equations are interchanged
- An equation is multiplied by a non-zero constant
- A constant multiple of one equation is added to another equation

\[x - 2y = -8 \]
\[2x + y = 9 \]

Q2: Solve the system
\[-6x + 3y = 9 \]
\[4x - 2y = 8 \]

Classify: ________________________________

Q3: Solve the system
\[-6x + 3y = 9 \]
\[4x - 2y = -6 \]

Classify: ________________________________

Express the infinite number of solutions in terms of the parameter \(k \).
Q4: Suppose that the supply and demand equations for printed baseball caps in a resort town are

\[
\text{price – supply: } \ p = 0.4q + 3.2 \quad \text{price – demand: } \ p = -1.9q + 17
\]

where \(q \) is the quantity of caps (in hundreds) and \(p \) is the price of one hat in dollars.

A. Discuss the stability of the baseball cap market at $4.

B. Find the equilibrium price and quantity.

Q5: A small company manufactures portable home computers. The plant has fixed costs (leases, insurance, utilities, etc.) of $65,000 per month and variable costs (labor, materials etc.) of $1,100 per unit produced. The computers are sold for $1600 each.

Let \(x \) = the number of units produced and sold
\(y \) = the monetary amount in $

A. What is the cost equation?

B. What is the revenue equation?

C. Graph both equations in the same coordinate system and
 - show and find the break – even point.
 - Interpret the regions between the lines and to the left and to the right of the break – even point.