
Journal of Statistical Theory and Applications ISSN 1538-7887 

Volume 11, Number 1, 2012, pp.47-61 

 
 
 
 
 
 
 
 
 
 

E-OPTIMAL SEMI-REGULAR GRAPH DESIGNS AND PARTIALLY 

EFFICIENCY BALANCED DESIGNS 

 
 
 

D.K. Ghosh 

Department of Statistics, Saurashtra University, Rajkot, India 

 
Joseph O.C. and Alex Thannippara 

Department of Statistics, St.Thomas College, Pala, Arunapuram, P.O. 686 574, Kerala, 

India 

 

S.C. Bagui 

Department of Mathematics and Statistics, University of West Florida, Pensacola, 

FL32514, USA 

 
 
 
 

Abstract 

Jacroux (1985) extended the definition of Regular graph designs of Mitchell and John (1976) to 

Semi-regular graph (SRG) designs, and studied the type 1 optimality of block designs. Here, the 

construction and optimality of some more SRG designs are discussed. Moreover, in this 

investigation, it is established that a class of two associate partially efficiency balanced design is, 

in fact SRG designs. 
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1. INTRODUCTION 

 

Block designs are extensively used in many fields of research activities. A wide range of balanced 

incomplete block (BIB) designs and partially balanced incomplete block (PBIB) designs are 

available in the literature. However, these designs are restricted to equi-replicate and equi-block 

sizes. Another new class of incomplete block designs, termed as partially efficiency balanced 

(PEB) designs was developed by Puri and Nigam (1977), which can be made available in varying 

replications and unequal block sizes. 

 

Let d be a block design having v treatments arranged in b blocks of size k(v> k) whose incidence 

matrix is Nd where entries ndij give the number of times the i
th 

treatment occurs in the j
th 

block. 

When ndij= 1 or 0 for all i, j , the design is said to be binary. The i
th 

row of Nd is denoted by rdi and 

represents the number of times treatment i is replicated in the design. The matrix NdN′d where N′d  

is the transpose of Nd  is referred as the concurrence matrix of d, and its entries are denoted by λdij. 

 

The mathematical model which is usually used to analyze the data obtained from d is the two-way 

additive model. This model specifies that all observations yij(the observation obtained after 

applying the i
th 

treatment to a unit occurring in the j
th 

block) are uncorrelated, have constant 

variance, and have expectation αi+ βj, where αi and βj are unknown parameters representing the 

effects of the i
th 

treatment and j
th 

block, respectively. Let Td and Bd denote vectors of treatment and 

block totals respectively, then the reduced normal equation for estimating the treatment effects in 

d can be written in matrix form as      

Cd α = Td −  Nd K
-1

 Bd 

 

where  Cd= diag(rd1, ..., rdv) − Nd diag(1/k1, 1/k2, ..., 1/kb)N′d ,  α′
 
= (α1, ..., αv) and diag(rd1, ..., rdv) 

denotes a v × v diagonal matrix. The matrix Cd is called the information matrix or C-matrix of d, 

and is positive semi-definite with zero row sums and zero column sum. In the subsequent 

sections, we need to find the Mo-matrix, where 

 

Mo= M − J(rd1, ..., rdv)′/n 

 

and M =  diag (1/r1, .., 1/rv) (Nd diag(1/k1, 1/k2, ..., 1/kb) N′d). Under the two-way additive model 

given above for d, it is well known that a necessary condition for a linear combination 



E-Optimal Semi-Regular Graph Designs  49 

i

v

i

iC 
1

of the treatment effects to be estimable is that


v

i

iC
1

=0.     Such a linear combination 

of the treatment effects is called a treatment contrast. A contrast of the form αi− αj is called a 

treatment difference. A design is said to be connected provided all possible treatment differences 

are estimable. Alternatively, a design d is connected if and only if its C-matrix has rank v − 1. 

Since connectedness is a desirable property for most block designs to have, only such designs are 

considered in this investigation. Let D(v, b, k) denotes the class of all connected block designs 

having v treatments arranged in b blocks of size k. 

 

In this paper, two different methods for the construction of semi-regular graph designs are carried 

out in section 3. In the first method, the SRG design is constructed by augmenting a new 

treatment in each of the b blocks of the BIB design, and then augmenting one more block which 

contains all the (v + 1) treatments. In the second method, the SRG design is constructed by 

augmenting a new treatment in each of the b blocks of the BIB design, and then augmenting (r − 

λ + 1) blocks which contain all the v treatments of the BIB design only. Further, it is verified that 

these semi-regular graph (SRG) designs belong to a particular class of partially efficiency 

balanced (PEB) designs with two efficiency classes. This shows that a particular class of PEB 

designs with two efficiency classes is also semi-regular graph designs. 

 

Definition 1.1. If in a design all the diagonal elements and off-diagonal elements of the 

concurrence matrix are differing by at most one, then it is called a semi-regular graph design. 

This definition is due to Jacroux (1985). 

 

Definition 1.2. A design d(v, b, k, r) is said to be a PEB design with m-efficiency classes if  

(i) there exists a set of (v−1) linearly independent contrasts si, i = 1, 2, ..., m, such that ρi of them 

satisfy the equation 

 

so that the efficiency factor associated with every contrast of the i
th 

class is (1 − µi) where µi (i = 

1, 2, ..., m) are eigen values of Mo with multiplicities ρi (Σρi= v − 1), and 

(ii) there exists mutually orthogonal idempotent matrices Li (i = 1, 2, ..., m) of ranks ρi such that  

, where, Mo = R
-1

 P −J r′/ n,  P = N K
-1

 N′, and N 

is the v × b incidence matrix, r is the v × 1 vector of treatment replications, k is the b × 1 vector of 

block sizes, R and K denote the diagonal matrices with diagonal elements as r and k, and R
-1

 and 
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K
-1

 are their inverses, and n denotes the total number of units. 

 

The parameters of PEB design with m-efficiency classes may now be written as v, b, r, k, µi, ρi, 

Li(i = 1, 2, ..., m). This definition was given by Puri and Nigam (1977). 

 

2. PRELIMINARY RESULTS 

 

For establishing the E-optimality of designs in sections 4.1 and 4.2, the following results are 

needed. 

Theorem 2.1. Let d є D (r1, ..., rv; b; k) have C-matrix Cd and let m equal to the smallest off-

diagonal entry occurring in NdN′d = ((λdij)). Then  

vm / k  ≤  Zd1  ≤  rp (k − 1) v / {(v − 1)k} 

with strict inequality on the right-hand side whenever λdpq  ≠  rp (k −1)/(v −1) for some q ≠  p, 

where Zd1 is assumed as the smallest nonzero eigenvalue of Cd  matrix. 

Theorem 2.2. Let d є D (r1, ..., rv; b; k) have information matrix Cd. If the entries of NdN′d = 

((λdij)) satisfy the condition that λdij  ≥  rp (k − 1)/(v − 1) for all i ≠ j then 

Zd1 = rp (k − 1)v/{(v − 1)k} and d is E-optimal in D(r1, ..., rv; b; k). 

 

Theorems 2.1 and 2.2 are due to Jacroux (1980). 

 

3.   METHODS OF CONSTRUCTION OF SEMI-REGULAR GRAPH DESIGNS 

 

In this section, two methods of construction of semi-regular graph designs, which are obtained 

using BIB designs, are discussed. These SRG designs are also happened to be PEB designs with 

two efficiency classes. 

 

3.1. Construction using BIB designs with b = r + 1 

 

Theorem 3.1.1. Let d(v=b, r=k, λ) be a symmetrical BIB design and let its parameters b and r 

satisfy the relation b = r + 1, where b be the number of blocks and r the number of replications of 

the treatments and λ = r - 1. Let Nd be the incidence matrix of the BIB design d, and Nd* be the 

incidence matrix of the augmented design d
*
. The incidence matrix Nd* defined as:  
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gives a semi-regular graph (SRG) design with parameters v
*
 = v+1, b

*
 = b+1, r

*
 = ( r+1, …, r+1, 

b+1), k
*
 = (k+1, …, k+1, v+1),  λ

*
 1 = λ+1, λ

*
 2 = r+1. 

Proof.  Let us consider a symmetrical BIBD with parameters v =b, r = k, and λ provided b =r+1. 

Using these parameters we obtain the concurrence matrix of the augmented design d+ as 

 


















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NN

v

vvvv

dd



 

For this concurrence matrix we observed the following: 

(i) The differences of the diagonal elements are: 

     (b+1)-(r+1) = b-r = 1   (since b = r+1) 

    (ii)  The differences of the off-diagonal elements are: 

(r+1)- (λ+1) = r- λ = 1    (since for a symmetrical BIBD with parameters v, b= r+1 and k=r and 

then using the relation λ(v – 1) = r( k – 1 ), we get  λ = r-1).                                                    

That is, the diagonal elements and the off-diagonal elements of the concurrence matrix are 

differing by at most one. Hence the design d+  is a semi-regular graph (SRG) design. This 

completes the proof. 

Remark: The BIBD, discussed in section 3.3, can easily be obtained from a reduced BIBD with 

parameters v =b = v, r = k = v – 1and λ = v – 2. 

Corollary 3.1.1. The class of semi-regular graph (SRG) designs constructed using Theorem 3.1.1 

is in fact PEB designs with two associate classes. 

 

Proof. This Corollary is proved using the Mo matrix of the design d+. The Mo matrix of the design 

d+ is obtained from the expression: 

Mo=diag(1/r1, 1/r2,..,1/rv+1) (Nd* diag (1/k1, 1/k2,…,1/kb+1)) Nd*
' 
)–J (r1, r2, ...,rv+1)'/n          (3.1)            

where J is a column vector of one’s of order v+1 and n is the total number of units. Using the 

parameters of symmetrical BIBD discussed in Theorem 3.1.1, we obtain the M0 matrix of design 

d
*
 as  

M0 = 
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where m =   (r + 1)v + (b + 1). We found that the eigen values of Mo are 
)1k)(1r(

r
1




  with 

multiplicity (v-1), and 1o2 )1v()M(trace    with multiplicity one respectively. So the 

design d
*
 is partially efficiency balanced (PEB) with efficiency factor 1-μ1 with multiplicity (v-1), 

and (1- μ2) with multiplicity one. This completes the proof. 

 

 

Theorem 3.1.2.  Let d(v= b, k= r, λ) be a symmetrical BIB design and its parameters satisfy the 

relation b = r + 1. Let Nd be the incidence matrix of the BIB design d, and Nd* be the incidence 

matrix of the augmented design d
*
. The incidence matrix Nd*  defined as: 
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gives a semi-regular graph (SRG) with parameters v
*
 = v+1, b

*
 = b+(r-λ+1),     r

*
 = (2r-λ +1, 

…, 2r-λ +1, b),  k
*
 = (k+1, …, k+1, v),  λ

*
 1 = r+1,  λ

*
 2 = r. 

Proof. Let us consider a symmetrical BIB design with parameters v= b, k= r, λ and we also 

observed that for this series of BIB design b = 2r – λ. The concurrence matrix of the augmented 

design d
*
  be 
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For this concurrence matrix, we observed the following: 

 

(i) The differences of the diagonal elements of the concurrence matrix Nd* N′d* are 

   (r-λ)+(r+1)-b = 2r-λ+1-b   = 1   (since b = 2r – λ) 

 (ii) The differences of the off-diagonal elements are (r+1)-r = 1.       
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That is, the diagonal elements and the off-diagonal elements of the concurrence matrix Nd*N′d* 

are differing by at most one. Hence the design d
*
 is a semi-regular graph (SRG) design. This 

completes the proof. 

Corollary 3.1.2. The class of SRG designs constructed using Theorem 3.1.2 is in fact partially 

efficiency balanced (PEB) designs with two efficiency classes. 

 

Proof. This Corollary is proved using the Mo-matrix of the design d+. The Mo-matrix of the 

design d+ is given by the following expression: 

Mo =diag (1/r1, 1/r2,..,1/rv+1) (Nd* diag (1/k1, 1/k2,…,1/kb+(r-λ+1)) Nd*
' 
) –J (r1, r2, ….,rv+1)'/n 

where J is a column vector of one’s of order v+1 and n is the total number of units. Further M0 is 

simplified as  
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where m = 2r-λ+1. Here eigenvalues of Mo are 
)1r2)(1k(

r
1




  with multiplicity   (v-1), 

and 1o2 )1v()M(trace    with multiplicity one. So the design d
*
 is partially efficiency 

balanced (PEB) with efficiency factor (1-μ1) with multiplicity (v-1), and (1- μ2) with multiplicity 

one. This completes the proof. 

3.2.  Numerical Examples 

 

As an application of the above two theorems, two numerical examples are given in this section. 

 

Example 3.2.1. Consider the symmetrical BIB design d(4, 4, 3, 3, 2) such that   b = r + 1, and 

blocks (as column) of this design are shown below: 

 

d = 

















4443

2332

1121
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Using Theorem 3.1.1, the augmented design d+ with parameters v
*
= 5, b

*
= 5, r

*
= (4, ..., 4, 5), k

*
= 

(4, ..., 4, 5), λ
*
 1= 3 and λ

*
 2= 4 is obtained, whose  incidence matrix Nd*  and the concurrence 

matrix Nd* Nd*’ of the design d
*
  is given by  

 

Nd*  =      
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This class of designs is Semi regular graph designs, because one can find that all the diagonal and 

the off-diagonal elements of the concurrence matrix Nd*N′d* are differing by at most one. 

The Mo-matrix of the design d
*
  is obtained as follows: 

 



































0019.00005.0005.0005.0005.

0006.047.00155.0155.0155.
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0006.0155.0155.047.00155.

0006.0155.0155.0155.047.0

Mo  

 

The eigen values of Mo are μ1 = 0.0625 with multiplicity 3 (= v-1) and μ2 = 0.0025 with 

multiplicity one. So the design d
*
 is partially efficiency balanced (PEB) with efficiency factors: (i) 

1 -  μ1  =  0 .9375 with multiplicity   (v-1) = 3 and  (ii)    1 -  μ2   =   0 .9975  with multiplicity 1. 

The following Table 3.2.1 gives the examples of unequi-replicated SRG designs with unequal 

 block sizes constructed using BIB designs.  
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Table 3.2.1 showing the parameters of BIB designs and SRG Designs 

Parameters of BIB design Parameters of resulting Semi regular Graph designs 

v b r k λ v
* 

b
* 

r
* 

k
* 

λ
*
 1 λ

*
 2 

4 4 3 3 2 5 5 4,…,4, 5 4,…,4, 5 3 4 

5 5 4 4 3 6 6 5,…,5, 6 5,…,5, 6 4 5 

6 6 5 5 4 7 7 6,…,6, 7 6,…,6, 7 5 6 

7 7 6 6 5 8 8 7,…,7, 8 7,…,7, 8 6 7 

8 8 7 7 6 9 9 8,…,8, 9 8,…,8, 9 7 8 

9 9 8 8 7 10 10 9,…,9, 10 9,…,9, 10 8 9 

10 10 9 9 8 11 11 10,…,10, 11 10,…,10, 11 9 10 

11 11 10 10 9 12 12 11,…,11, 12 11,…,11, 12 10 11 

 

Further, it is found that all the above SRG designs belong to a particular class of PEB designs 

with two efficiency classes. 

Example.3.2.2. Consider the symmetrical BIB design d(4, 4, 3, 3, 2) such that b = r+1. Blocks of 

this design are shown below: 



















4443

3322

2111

d  

 

 Using Theorem 3.1.2, the augmented design d+ with parameters v
 * 

= 5, b 
* 
= 6, r

*
 = (5, ..., 5, 4),        

 

k
*
  = 4, λ

*
 1 = 3 and λ

*
 2  = 4 is obtained, and its incidence matrix Nd* is expressed as: 

 































00|1111

11|1110

11|1101

11|1011

11|0111

*dN  

 

Moreover, the concurrence matrix of the design d
* 
is given by the expression: 
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

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This class of designs is Semi regular graph designs, because one can find that all the diagonal and 

the off-diagonal elements of the concurrence matrix Nd* Nd* are differing by at most one. 

The Mo -matrix of the design d
*
 is obtained as follows: 

 



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


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
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0833.00208.0208.0208.0208.
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0167.0083.0417.00083.0083.

0167.0083.0083.0417.00083.

0167.0083.0083.0083.0417.0

Mo  

 

The eigen values of Mo are µ1 = 0.05 with multiplicity 3 (= v − 1) and µ2 = 0.10 with 

multiplicity one. So, the design d
*
 is partially efficiency balanced (PEB) with efficiency factors: 

(i) 1 - µ1 = 0.95 with multiplicity (v - 1) = 3, and (ii) 1 - µ2 = 0.90 with multiplicity 1. 

 

  The following Table 3.2.2 gives the examples of unequal-replicated and proper SRG designs 

constructed using BIB designs. 

 

Table 3.2.2 showing the parameters of BIB designs and SRG Designs 

Parameters of BIB design Parameters of resulting Semi regular Graph designs 

v b r k λ v
* 

b
* 

r
* 

k
* 

λ
*
 1 λ

*
 2 

4 4 3 3 2 5 6 5,…,5, 4 4 3 4 

5 5 4 4 3 6 7 6,…,6, 5 5 4 5 

6 6 5 5 4 7 8 7,…,7, 6 6 5 6 

7 7 6 6 5 8 9 8,…,8, 7 7 6 7 

8 8 7 7 6 9 10 9,…,9, 8 8 7 8 

9 9 8 8 7 10 11 10,…,10, 9 9 8 9 

10 10 9 9 8 11 12 11,…,11, 10 10 9 10 

11 11 10 10 9 12 13 12,…,12, 11 11 10 11 

 



E-Optimal Semi-Regular Graph Designs  57 

 

Further, it is found that all the above SRG designs belong to a particular class of PEB designs 

with two efficiency classes. 

 

4. E-OPTIMALITY OF SRG DESIGNS 

 

A design d
*
 is E-optimal if and only if the maximal variance among all best linear unbiased 

estimators of normalized linear contrasts is minimal under d
*
. That is, a design d

*
 Ωv,b,k is 

called E-optimal if Zd*1 ≥ Zd1 for all designs d   Ωv,b,k , where Zd1 is the least nonzero eigen 

value of the information matrix Cd. Jacroux (1980) obtained characterization of E-optimal block 

designs in the subclasses of proper designs, with unequal number of replications of the 

treatments. Using the results of Jacroux (1980), we obtained the E-optimality of semi regular 

graph design with  unequal-replicated and unequal block sizes. 

 

 In this section, the E-optimality of unequal-replicated designs with unequal block sizes and the 

E-optimality of unequal-replicated proper designs are considered. 

 

4.1.   E-optimality of unequi-replicated designs with unequal block sizes 

 

Now, the results of Jacroux (1980) is extended, and the E-optimality of unequi-replicated designs 

with unequal block sizes is considered. 

Let d D(rp , v − 1; ks , b − 1; n) with incidence matrix Nd and information matrix Cd ; where     

rp = min(r1 , r2 , ..., rv ) and ks = min(k1 , k2 , ..., kb ) and Cd = Rd − Nd Kd
-1

 Nd' = Rd − Pd and 

let Pd = (δii' ). Now, consider the matrix     

Txd = ks Cd − x{v(v − 1)
-1

 I − (v − 1)
-1

 J}                                                  (4.1) 

where x is any real number, I is the v × v identity matrix and J is the v × v matrix of ones. The 

eigenvalues of Txd are 0 < ks Zd1 − xv/(v − 1) ≤ ... ≤ ks Zdv-1 − xv/(v − 1). 

Now, consider the following theorems: 

 

Theorem 4.1.1. For any design, d   D(rp , v − 1; ks , b − 1; n) and m = min i≠i
'
 (ks δii

'
 ) then  

mv/ks ≤ Zd1 ≤ rp (v)(ks − 1)/{(v − 1)ks } 

Further, if m = rp (ks − 1)/(v − 1), then Zd1 = rp (v)(ks − 1)/{(v − 1)ks }      and then d is E-

optimal in D(rp , v − 1; ks , b − 1; n). 
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Proof. Considering x = rp (ks − 1), the proof follows on the lines of the proof of Theorem 3.1 of 

Jacroux (1980) by taking Txd as defined in (4.1). 

 

Theorem 4.1.2. The class of SRG designs constructed using Theorem 3.1.1, with parameters v
*
 = 

v +1, b
*
 = b +1, r

*
 = (r + 1, ..., r + 1, b + 1), k

*
 = (k + 1, .., k + 1, v + 1), λ

*
 1 = λ + 1 and λ

*
 2 = 

r + 1 having the incidence matrix Nd* is  in fact an E-optimal in D(rp* , v
*
 − 1; ks* , b 

*
− 1; n

*
). 

 

Proof. Let, 

                         Pd* = Nd Kd
-1

 Nd' 

After simplification, we obtain Pd* as  

               Pd*















































































1

1

1
|

1

1

1

|
1

1

1
|

1

1

11

1

1

bk

b
J

vk

r

J
vk

r
J

vk
I

k

r

v

vvvv



                        

Here the off-diagonal elements are  











 1

1

1 vk


 and 












 1

1

1 vk

r
 respectively. 

Also, )(min *iiii   = 











 1

1

1 vk


 (Since, λ = r − 1). 

Since k < v, and k
*
 = (k + 1) or v

*
 = v + 1, the minimum block size ks* = (k + 1); 

and, )(min ** iisii k   = 














1

1

1
)1(

vk
k


 ≈ r, since λ = r − 1 and k < v. 

Also, rp* = r + 1 = b ( since b = r + 1). So, rp* (ks* − 1)/(v
*
− 1) = bk/v = r. That is, 

)(min ** iisii k   = rp* (ks* − 1)/(v* − 1). Therefore, using the preliminary results of Theorems 

2.1 and 2.2 , we observed that 

  

          Zd1 = rp* (v*)(ks* − 1)/{(v* − 1)ks*} 

 

and hence the above class of designs is E-optimal in D(rp* , v* − 1; ks* , b* −1; n
*
 ). 

 

Example 4.1.1. Consider the SRG design d
*
 with parameters v* = 5, b* = 5, r* = (4, ..., 4, 5),               

k* = (4, ..., 4, 5), λ* 1 = 3 and λ* 2 = 4 given in Example 3.3.1. Now, Pd* = Nd Kd
-1

 Nd' which 

after solving, we have  
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                Pd* 

























20.195.095.095.095.0

95.095.070.070.070.0

95.070.095.070.070.0

95.070.070.095.070.0

95.070.070.070.095.0

 

    

For this design the minimum block size, ks* = 4, rp* = 4 and by using Theorems 4.1.1 and 4.1.2 , 

we get  m = )(min ** iisii k   = 2.8 ≈ 3 (m an integer). Also, rp* (ks* − 1)/(v* − 1) = 4(4 - 1)/(5 - 

1) = 3.0  i.e.,  m = rp* (ks* − 1)/(v * − 1), then the minimum eigenvalue of the information matrix 

Cd* , is given by Zd1= rp* (v* )(ks* − 1)/{(v *− 1)ks* }= 4(5)(4 − 1)/{(5 − 1)4} = 3.75.  Hence d
*
 

is E-optimal in D(4, 4; 4, 4; 21). 

 

4.2.  E-optimality of unequal-replicated proper designs 

 

Now, the results of Jacroux (1980) is extended, and the E-optimality of unequal-replicated proper 

designs is considered. 

Let d є D(r1 , r2 , ..., rv ; b; k) have incidence matrix Nd and information matrix Cd and                         

rp = min(r1 , r2 , ..., rv ). Now, consider the matrix 

 

            Txd = kCd − x{v(v − 1)−1 I − (v − 1)−1 J}                              (4.2) 

 

where x is any real number, I is the v × v identity matrix and J is the v × v matrix of ones. The 

eigenvalues of Txd are  0 < kZz1 − xv/(v − 1) ≤ ... ≤ kZdv-1 − xv/(v − 1) 

Now, we consider the following theorems: 

 

Theorem 4.2.1. Let d є D(r1 , r2 , ..., rv ; b; k) have C−matrix Cd and let m equal to the smallest 

off-diagonal entry occurring in Nd N'd = ((λdij )). Then   mv/k ≤ Zd1 ≤ rp (v)(k − 1)/{(v − 1)k} 

Further, if λdij ≥ rp (k − 1)/(v − 1) for all i ≠ j then Zd1 = rp (v)(k − 1)/{(v −1)k} and then d is E-

optimal in   d є D(r1 , r2 , ..., rv ; b; k). 

 

Proof. Consider x = rp (k − 1). Next we can easily prove this theorem on similar lines of the 

proof of Theorem 3.1 of Jacroux (1980 by taking Txd as defined in (4.2). 

 

Theorem 4.2.2. The class of SRG designs constructed using Theorem 3.2.1, having incidence 
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matrix Nd+ and parameters v
*
 = v + 1, b

*
 = b + (r − λ + 1), r

*
 = (2r − λ + 1, ..., 2r − λ + 1, b),                            

k
*
 = (k + 1, k + 1, ..., k + 1, v, ..., v ), λ

*
 1 = r + 1, and λ

*
 2 = r is E-optimal in D(r1* , r2*  , ..., rv* 

; b
*
 ; k

*
). 

 

Proof. Here we obtain the concurrence matrix of the augmented design d
*
 as 

 



























brJ

rJJrIr

NN

v

vvvv

dd

|

|

|)1()(

1

1

**



 

  

Here, the off-diagonal elements of the concurrence matrix are (r + 1) and r, That is, λd*ij = r + 1, 

for all i ≠ j= 1,2,…,v and  λd*ij = r, for all I = 1,2,….,v and j = v+1. Also, rp+ (k+ − 1)/(v+ − 1) = 

bk/v = k = r, (since the design is a symmetrical BIB design).  So, λd*ij ≥ rp* (k*  − 1)/(v
*
 − 1) for 

all i ≠ j. Therefore, using the preliminary results of Theorems 2.1 and 2.2, we observed that 

  

   Zd1* = rp
*
  (v

*
 )(k

*
 − 1)/{(v

*
 − 1)k 

*
} 

 

and hence the class of SRG design is E-optimal in D(r1* , r2*  , ..., rv* ; b
*
 ; k

*
). 

 

 Example 4.2.1. Consider the SRG design d
*
 with parameters v

*
 = 5, b

*
 = 6, r

*
 =(5,…, 5, 4), k

*
 = 

4,  λ
*
 1 = 3 and λ

*
 2 = 4 given in Example 3.3.2. 

The concurrence matrix of the design d
*
 of example 4.2.1 is given by the expression 

 

























43333

35444

34544

34454

34445

** dd NN  

 

Here, the off-diagonal elements of the concurrence matrix are 4 and 3, that is,  λd*ij = 4 for all 

 i ≠j= 1,2,…,4 and  λd*ij = 3 for all i = 1,2,…,4 and j = 5. Also, rp* (k
*
 − 1)/(v

*
 − 1) = 4(3)/4 = 3. 

Therefore, λd*ij ≥ rp* (k* − 1)/(v* − 1) for all i ≠ j. Hence, using the Theorems 2.1 and 2.2 , we 

have Zd1* = rp* (v* )(k* − 1)/{(v* − 1)k* }= 4(3)(5)/4(4) = 3.75. Hence we say that the design d
*
 

is E-optimal in D(5,...,5, 4; 6; 4). 
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