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Abstract

Let X be any non-Gaussian variable with continuously differentiable density and finite

variance. Let N be a Gaussian variable independent with X. If denoting L(X,N) be a linear

space generated by X,N , then we prove that (X,N) is a unique local solution of an optimal

problem: min{I(Y1, Y2) : Y1, Y2 ∈ L(X,N), Y1, Y2 6= O}, where I be the mutual information

operator, and O be the zero-variable, O = 0 a.e.. This is the main idea of ICA for the

simplest case. To prove this result, we have used some beautiful properties of convolution

connecting information theory with estimation theory.
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1. Introduction

The goal of Independent Component Analysis (ICA) is finding a new suitable representation

of the data, which minimizes the statistical dependence. This is one of central problems in neural

network research, statistics and signal processing. The general notations and calculations of

ICA can be seen in [2, 3, 4, 9, 10, 16]. According to [4], the ICA problem was actually first

introduced and so named by Herault and Jutten around 1983. More than twenty five years,

ICA has received a lot of attention in a wide area of science because of the useful information

getting from its new representation of the data.

In this paper, we will focus on the theory for the simplest case of ICA. We assume that

the data can be presented by random variables and the suitable transformation to make a new

representation of the data is a linear transformation. The ICA problem for two random variables

is stated as follows. Let’s any two random variables X1, X2 which not be “purely” dependent

(i.e. ∄ a ∈ R : X1 = aX2 a.e.). If denoting L(X1,X2) be a linear space generated by X1, X2, the

ICA of (X1, X2) is finding new random variables Y1, Y2 ∈ L(X1,X2) which have the maximum

statistical independence. The main result of this paper shows that: If X1, X2 ∈ L(X,N) (i.e.

L(X1,X2) ≡ L(X,N)), where X is a non-Gaussian variable with continuously differentiable density

and finite variance, and N is a standard Gaussian variable independent with X, then by using

mutual information for measuring the statistical independence of two random variables, a couple

variables (X,N) is not only a global solution but also a unique local solution of the optimal

ICA problem. This case is called the Simplest case of ICA. Concretely, denoting I be the

mutual information operator, the main result can be explained as follows: ∀ Y1, Y2 ∈ L(X,N),

(Y1, Y2) /∈ {(aX, bN)|a, b ∈ R} ⇒ ∀ǫ > 0, ∃T ∈ R2×2, such that ‖T‖ 6 ǫ and

I(Y1, Y2) > I[(Y1, Y2)T ],

where ‖T‖ is the norm of matrix T . This result not only proves the signification of ICA, but

also indicates the sufficiency of mutual information operator in the simplest case.

Recently, the properties of mutual information and Shannon entropy of convolution has been

studied by many researchers in information theory and estimation theory. This researchers have

tried to bring out the concavity of the entropy under the “variance preserving” convolution for

proving the popular inequality in information theory, named Entropy Power Inequality, (see

in [1, 5, 12, 13, 14, 15]), and describe the structure of the function estimating non-Gaussian
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variables in Gaussian noise (see in [7, 8, 17]). In their working, some beautiful properties

connecting information theory with estimation theory, which are important tools using in this

paper, have appeared.

The remainder of the paper is organized as follows: Definition of the simplest case of ICA

is introduced in Section 2. The main result is also given in this section. Section 3 is devoted

to prove four lemmas, the crucial tools for proving Theorem. The Theorem, main result of the

paper, is proven in section 4. Finally, section 5 is discussion.

2. Information and ICA Problem

Information. Let X be any random variable with finite variance. The Shannon entropy H

is defined as follows. If X has a density function fX(x), then H(X) = −
∫
fX(x) log fX(x)dx;

otherwise H(X) = ∞. Let X,Y be any couple random variables with finite variances. If X

has a density function fX , Y has a density function fY , and (X,Y ) has a joint density function

fX,Y , defining the mutual information

I(X,Y ) =

∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy. (1)

By the concavity of the logarithm, I(X,Y ) is nonnegative and equals zero only if fX,Y = fXfY

a.e. Consequently, the mutual information I(X,Y ) can be used for measuring the statistical

independence of X and Y . The mutual information can be presented from entropy as follows

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (2)

where H(X,Y ) = −
∫
fX,Y log fX,Y is an entropy of random vector (X,Y ). From the property

of density function: faX(x) = afX(x
a
) where faX is a density of variable aX, H(aX) = H(X)+

log |a| and I(aX, bY ) = I(X,Y ), for all scales a, b 6= 0.

ICA Problem. Let X1, X2 be a couple random variables with finite variances. Denote

L(X1,X2) is a linear space generated by X1, X2. The Independent Component Analysis (ICA)

of (X1, X2) is finding a new couple random variables Y1, Y2 ∈ L(X1,X2) which minimizes the

statistical dependence. If X1, X2 are “purely” dependent, i.e. ∃a ∈ R : X1 = aX2 a.e.,

then Y1 = Y2 = O, where O is a zero-variable (O = 0 a.e.); the ICA problem doesn’t have

signification. Without loss the signification of ICA problem, we assume that X1, X2 are not



L. T. Kien 542

purely dependent, and ICA solutions Y1, Y2 6= O. Using the mutual information operator, the

ICA of (X1, X2) can be understand as solutions of an optimal problem

min
Y1,Y2∈L(X1,X2)

\{O}
I(Y1, Y2). (3)

Because I(Y1, Y2) = I(aY1, bY2) for all scales a, b 6= 0, we will consider the solution (Y1, Y2) be

a delegate of the set of solutions (Y1, Y2) = {(aY1, bY2)|a, b 6= 0}, and stipulate two solutions

(Y1, Y2) and (Z1, Z2) be called different only if (Y1, Y2) /∈ (Z1, Z2), and vice versa. By new

regulations, the ICA of (X1, X2) can be reduced in a sub-space as follows. Defining a relation

∼ on L(X1,X2) such that ∀Y, Z ∈ L(X1,X2), Y ∼ Z ⇔ ∃a ∈ R, a 6= 0, Y = aZ a.e.. It is not

difficult to see that ∼ is an equivalence relation on L(X1,X2), so we can define a sub-space

L∗
(X1,X2)

= L(X1,X2)/ ∼. The signification of ICA problem still retains when we consider on the

sub-space L∗
(X1,X2)

:

min
[Y1],[Y2]∈L∗

(X1,X2)
\{[O]}

I(Y1, Y2), (4)

where [Y ] = {Z ∈ L(X1,X2)|Z ∼ Y }. Of course, the ICA of (X1, X2) is same with the ICA of

(X̃1, X̃2) if L(X1,X2) ≡ L
(X̃1,X̃2)

.

Main Result. In this paper, we consider a case, which called the Simplest case of ICA,

when X1, X2 belong to a linear space generated by a non-Gaussian variable X and another

standard Gaussian variable N independent with X. We show that, if X is a random variable

with continuously differentiable density and finite variance, then the ICA solution of (X1, X2)

is a couple variables (X,N). Moreover, we prove that ([X], [N ]) is not only a global solution

but also a unique local solution of the optimal problem (4). The main result of this paper is

stated in following Theorem.

Theorem. Let any non-Gaussian variable X with continuously differentiable density and finite

variance, and a standard Gaussian variable N independent with X. Then the optimal problem

min
[Y1],[Y2]∈L∗

(X,N)
\{[O]}

I(Y1, Y2) (5)

has a unique local solution ([X], [N ]).

Two basic notations in Information theory and Estimation theory are needed in the proof

of Theorem. They are Fisher’s information and Minimum mean square error (mmse). Their

definitions and some interested properties which using in the proof of Theorem will be introduced

in next section.
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3. Lemmas

In this section, four results about the relationships between the first derivative of entropy,

the Fisher’s information and the minimum mean square error (mmse) of convolution are re-

searched. Let X be a random variable with continuously differentiable density fX . The Fisher’s

information of X is defined F(X) = Eρ2(X), where ρ = f ′
X/fX is the score function for X. Let

two random variables X,Y with finite variances. The minimum mean square error in estimating

X with condition of appearing Y is given as formula mmse(X|Y ) = E
{
[X −E(X|Y )]2

}
, where

the expectation is taken over the joint distribution of X and Y .

The first result states a linear relationship between the first derivative of entropy and the

Fisher’s information in convolution case.

Lemma 1. Let any non-Gaussian variable X with continuously differentiable density fX . Let

N be a standard Gaussian variable independent with X. Then for all t ∈ R, the convolution

X + tN has an interesting property

d

dt
H(X + tN) = tF(X + tN). (6)

Proof. Let ft be a density of variable X + tN . We have

ft(y) =

∫
fX(x)

1√
2πt

e−
‖y−x‖2

2t2 dx.

⇒ 1. ∂
∂t
ft(y) =

∫
fX(x)

1√
2πt2

(‖y − x‖2
t2

− 1
)
e−

‖y−x‖2

2t2 dx

2. ∂
∂y
ft(y) =

∫
fX(x)

1√
2πt

(‖y − x‖
t2

)
e−

‖y−x‖2

2t2 dx

3. ∂2

∂y2
ft(y) =

∫
fX(x)

1√
2πt3

(‖y − x‖2
t2

− 1
)
e−

‖y−x‖2

2t2 dx.

⇒ ∂
∂t
ft(y) = t ∂2

∂y2
fX(y). Hence, the first derivative of entropy in t is computed as follows

d

dt
H(X + tN) = −

∫
log ft(y)

∂

∂t
ft(y)dy = −

∫
t log ft(y)

∂2

∂y2
ft(y)dy

= −t

∫
∂

∂y
log ft(y)

∂

∂y
ft(y)dy + t

∫ ( ∂

∂y
log ft(y)

)( ∂

∂y
ft(y)

)
dy.

Since the Fisher’s information of X + tN is existed, then a value ( ∂
∂y
ft(y))/

√
ft(y) is bounded

when ‖y‖ → ∞. By
√
ft(y) log ft(y) → 0 as ‖y‖ → ∞, we have

d

dt
H(X + tN) = t

∫ (f ′

t (y)

ft(y)

)2
ft(y)dy = tF(X + tN).
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The Lemma 1 is proven.

A simple relation between Fisher’s information and minimum mean square error (mmse) of

X + tN is mentioned in Lemma 2. This formula was introduced and proven carefully in [7, 13].

Lemma 2. Let any non-Gaussian variable X with continuously differentiable density fX and

finite variance. Let N be a standard Gaussian variable independent with X. Then

1. t2F(X + tN) +mmse(N |X + tN) = 1, ∀t ∈ R.

2. t2F(X + tN) decreases in t ∈ (−∞, 0], increases in t ∈ [0,+∞), and bounded by zero and

one.

Proof. Let any random variable Z with a continuously differentiable density fZ . Denote S(Z) =

f
′

Z/fZ , which called score function for Z, be a zero mean variable. Blachman, N.M. [1] showed

us that S(X + tN) = E
[
S(tN)|X + tN

]
. By the law of total variance, we have

F(X + tN) = V ar
[
S(X + tN)

]
= V ar

(
E
[
S(tN)|X + tN

])

= V ar
[
S(tN)

]
− E

(
V ar

[
S(tN)|X + tN

])

= F(tN)−mmse
[
S(tN)|X + tN

]
,

where V ar(·) denotes a variance operator of random variable. tN is Gaussian variable with

variance t2, so S(tN) = −tN/t2 and F(tN) = t−2. Therefore

t2F(X + tN) = 1− 1

t2
mmse(tN |X + tN) = 1−mmse(N |X + tN). (7)

Of course, mmse(N |X + tN) increases from zero to one in t ∈ (−∞, 0], and decreases from

one to zero in t ∈ [0,+∞). Then t2F(X + tN) decreases from one to zero in t ∈ (−∞, 0], and

increases from zero to one in t ∈ [0,+∞).

Lemma 3. Let any non-Gaussian variable X with continuously differentiable density fX and

finite variance. Let N be a standard Gaussian variable independent with X. Then, for all t ∈ R,

t 6= 0

mmse(N |X + tN) =
1

t2
mmse

(
X|1

t
X +N

)
. (8)

Proof. By the law of total variance,

mmse(N |X + tN) = 1− V ar
[
E(N |X + tN)

]
= 1−

∫
κ21(y, t)

κ0(y, t)
dy,
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where κi(y, t) =
∫
fX(y − tx) xi√

2π
e−

‖x‖2

2 dx, i = 0, 1. By changing variable z = y−x
t
, we have

κ1(y, t) =
y

t2

∫
fX(z)

1√
2π

e−
‖y−z‖2

2t2 dz −
∫

fX(z)
z√
2πt2

e−
‖y−z‖2

2t2 dz

=
1

t

[
yft(y)− E(X|Xt = y)ft(y)

]

⇒
∫

κ21(y, t)

κ0(y, t)
dy =

1

t2

(
V ar(Xt)− 2E

[
XtE(X|Xt)

]
+ E

[
(E(X|Xt))

2
])

=
1

t2

(
1 + t2 − 2E

[
EXtX|Xt

]
+ V ar

[
E(X|Xt)

])

= 1− 1

t2
mmse(X|Xt),

where Xt = X + tN . It is not difficult to see mmse(X|Xt) = mmse(X|1
t
X + N). Thus,

mmse(N |X + tN) = 1
t2
mmse(X|1

t
X +N).

The function mmse(N |X + tN) decreases from one to zero, and continuous in t ∈ [0,+∞),

so an equation mmse(N |X + tN) = 1/2 always exists a unique solution which denoted t∗.

Since, mmse(N |X) = 1, mmse(N |X + tN) → 0 as t → +∞, then t∗ ∈ (0,+∞). We also

define a function h : [0,+∞) ∪ {+∞} → [0,+∞) ∪ {+∞} satisfied mmse(N |X + h(t)N) =

1−mmse(N |X+ tN) ∀t ∈ (0,+∞), and h(0) = +∞, h(+∞) = 0. The function h is decreasing

and continuous. The last result in this section will focus on a structure of mmse(N |X + tN)

related to new notations t∗ and h(t), which is the important idea for proving Theorem.

Lemma 4. Let any non-Gaussian variable X with continuously differentiable density fX and

finite variance. Let N be a standard Gaussian variable independent with X. t∗ and h(t) are

defined as above. Then

1. mmse(N |X+ tN) 6 1− t
2t∗ , ∀t ∈ [0, t∗], and mmse(N |X+ tN) > 1− t

2t∗ , ∀t ∈ (t∗,+∞).

2. Equation tmmse(N |X+tN) = h(t)mmse(N |X+h(t)N) has only three solutions t = 0, t∗,

and +∞ on interval [0,+∞].

Proof. Let g(t) = mmse(N |X+ tN)−1+ t/(2t∗), then g(t∗) = 0. Denote Mδ = V ar(X|
√
δX+

N) for all δ > 0. In [7, 8], D.Guo, et al. showed that d
dδ
mmse(X|

√
δX + N) = −E(M2

δ ). Of

course, mmse(X|
√
δX + N) = E(Mδ). From the Lemma 3, we know mmse(N |X + tN) =

δmmse(X|
√
δX +N) with δ = 1/t2. So

g′(t) =
d

dt

[
δmmse(X|

√
δX +N)

]
+

1

2t∗
=

2

t3

[
δE(M2

δ )− E(Mδ) +
t

4δt∗

]

=
2

t3

[(√
δE(Mδ)−

1

2
√
δ

)2
+ δ

(
E(M2

δ )−
[
E(Mδ)

]2)
+

1

4δ

( t

t∗
− 1

)]
.
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Figure 1: Interpreting a geometric view of the proof of Lemma 4.

Since E(M2
δ ) > [E(Mδ)]

2, and t/t∗ > 1, ∀t > t∗ ⇒ g strictly increases in t ∈ (t∗,+∞). Because

g(t∗) = 0, then mmse(N |X + tN) > 1 − t/(2t∗) for all t > t∗. Moreover, if exists t1 ∈ (0, t∗)

such that g(t1) > 0 ⇒ E(Mδ1) > 1/δ1 − 1/(2δ1)
√
δ∗/δ1, where δ1 = t−2

1 , δ∗ = t∗−2. Apply in

formula of g′(t1), we have

g′(t1) >
[√

δ1E(Mδ1)−
1

2
√
δ1

]2
+

1

4δ1

( t1
t∗

− 1
)

>

[
1√
δ1

− 1

2
√
δ1

(
1 +

√
δ∗

δ1

)]2
+

1

4δ1

(√
δ∗

δ1
− 1

)

=
1

4δ1

(√
δ∗

δ1
− 1

)(√
δ∗

δ1
− 2

)
.

δ1 > 0 and δ∗/δ1 < 1 ⇒ g′(t1) > 0 ⇒ ∃ǫ > 0 : g(t1 + ǫ) > g(t1) > 0. It means

that g(t) > 0, ∀t ∈ [t1, t
∗], and g(t∗) > 0. Contradict with g(t∗) = 0. Thus, the hypothesis

∃t1 ∈ (0, t∗) : g(t1) > 0 is wrong. Hence, mmse(N |X + tN) 6 1− t/(2t∗) for all 0 6 t 6 t∗.

The second result in this lemma is a consequence of the first result. The explanation is

given in Figure 1. Of course t = 0, t∗,+∞ are solutions of equation tmmse(N |X + tN) =

h(t)mmse(N |X + h(t)N). Now we prove that if t ∈ (0, t∗), then tmmse(N |X + tN) <

h(t)mmse(N |X+h(t)N). Indeed, denoting | · | be a length of line segment in geometric view as

in Figure 1. Denoting O ≡ (0, 0) be a original point, A1 ≡ (t, 0), B4 ≡ (0,mmse(N |X + tN)),

C2 ≡ (t,mmse(N |X+ tN)), and other points A2, A3, . . . , C6 as simulating in Figure 1. Because

mmse(N |X + tN) 6 1− t/(2t∗), ∀t ∈ (0, t∗) ⇒ |A1C2| 6 |A1C1| ⇒ |B5B6| 6 |B4B6|. Let’s
|OB1| = |B5B6| = t/(2t∗), |OB2| = |B4B6| = 1 −mmse(N |X + tN), we have |OB1| 6 |OB2|.
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Because mmse(N |X + tN) > 1 − t/(2t∗), ∀t ∈ (t∗,+∞) ⇒ |B2C4| < |B2C6|. Note

that, since C1, C3, C4, C5 are in straight line B6A5, |B6B5| = |OB1| 6 |OB2| 6 |OB3| =

1/2 ⇒ SOA1C1B5 = SOA4C5B1 6 SOA3C4B2 6 SOA2C3B3 , where S denotes a area of rect-

angle. Therefore, tmmse(N |X + tN) = SOA1C2B4 6 SOA1C1B5 6 SOA3C4B2 < SOA6C6B2 =

h(t)mmse(N |X + h(t)N). It means tmmse(N |X + tN) < h(t)mmse(N |X + h(t)N) for all

t ∈ (0, t∗). Since, h[h(t)] = t, then the function tmmse(N |X + tN) = h(t)mmse(N |X + h(t)N)

also doesn’t have a solution in t ∈ (t∗,+∞). Thus, the equation tmmse(N |X + tN) =

h(t)mmse(N |X + h(t)N) does not have any solution excepting 0, t∗,+∞. The proof of Lemma

4 is finish.

4. Proof the Theorem

It is not difficult to see the optimal problem (5) in Theorem is equivalent with the following

optimal problem

min
t1,t2∈R

I(X + t1N,X + t2N), (9)

where R = R∪{−∞,+∞}. Note that, in (9), we refer to I(X+ t1N,X+ t2N) = I(N,X+ t2N)

when t1 = ∞ and I(X + t1N,X + t2N) = I(X + t1N,N) when t2 = ∞. By equation (2)

in section 2, I(X + t1N,X + t2N) = H(X + t1N) + H(X + t2N) − log |t2 − t1| − H(X,N).

Fortunately, the entropyH(X,N) is independent with t1, t2. Therefore, if considering a function

L(t1, t2) = H(X + t1N) +H(X + t2N)− log |t2 − t1|, t1, t2 ∈ R, then the local solutions of the

optimal problem (9) can be determined based on this function as follows: (t1, t2) is a local

solution of (9) if and only if it is a solution of the following equations




∂

∂t1
L(t1, t2) =

∂

∂t2
L(t1, t2) = 0

( ∂2

∂ti∂tj
L(t1, t2)

)

i,j∈{1,2}
is positive.

(10)

From the Lemma 1, we compute the first derivation of L as follows

∂

∂t1
L(t1, t2) = t1F(X + t1N) +

1

t2 − t1
=

a(t1)(t2 − t1) + t1
t1(t2 − t1)

∂

∂t2
L(t1, t2) = t2F(X + t2N) +

1

t1 − t2
=

a(t2)(t1 − t2) + t2
t2(t1 − t2)

,

(11)

where a(t) = t2F(X + tN). Equation (11) shows us that if t1 = t2, then ∂
∂t1

L(t1, t2) =

∂
∂t2

L(t1, t2) = ∞. Indeed, we only consider t1 6= t2. Consider the case t1, t2 ∈ (0,+∞]. If t1 < t2,
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a(t1), t2 − t1, t1 > 0 ⇒ ∂
∂t1

L(t1, t2) > 0. If t1 > t2, a(t2), t1 − t2, t2 > 0 ⇒ ∂
∂t2

L(t1, t2) > 0.

Similarly for the case t1, t2 ∈ [−∞, 0). Hence, (t1, t2) is a local solution of (9) only if t1t2 6 0.

Without loss of generality, we assume t1 ∈ [−∞, 0] and t2 ∈ [0,+∞]. Next, we see that




∂

∂t1
L(t1, t2) = 0

∂

∂t2
L(t1, t2) = 0

⇔





a(t1) =
t1

t1 − t2

a(t2) =
t2

t2 − t1

⇒ a(t1) + a(t2) = 1.

(12)

Lemma 2 shows that a(t) = t2F(X+tN) = 1−mmse(N |X+tN) is a continuous function and

decreasing from one to zero in t ∈ R+. We define a value t∗ and a function h : [0,+∞] → [0,+∞]

satisfy a(t∗) = 1/2 and tmmse(N |X + tN) + h(t)mmse
[
N |X + h(t)N

]
= 1 as in Lemma 4.

Because N is a standard Gaussian variable, the functions H(X + tN) and mmse(N |X + tN)

will be symmetric at t = 0, i.e H(X + tN) = H(X − tN), mmse(N |X + tN) = mmse(N |X −
tN), ∀ t ∈ R. Therefore the equation a(t1) + a(t2) = t1mmse(N |X + t1N) + t2mmse(N |X +

t2N) = 1 with t2 > 0 > t1 infers t1 = −h(t2). So, the function L(t1, t2) can rewrite according

parameter t ≡ t2 as follows

L(t1, t2) ≡ L(t) = H(t) +H[−h(t)]− log[t+ h(t)]

= H(t) +H[h(t)]− log[t+ h(t)],

where H(t) = H(X + tN). Note that, tH ′(t) + h(t)H ′[h(t)] = 1 comes from a(t) + a[h(t)] = 1,

and h is a nonnegative decrease function. Then

L′(t) = 0 ⇔ H ′(t) +H ′[h(t)
]
h′(t)− 1 + h′(t)

t+ h(t)
= 0

⇔ 1− h(t)H ′[h(t)
]

t
+H ′[h(t)

]
h′(t)− 1 + h(t)

t

t+ h(t)
− h′(t)− h(t)

t

t+ h(t)
= 0

⇔
(
h′(t)− h(t)

t

)(
h2(t)F

[
X + h(t)N

]
− h(t)

t+ h(t)

)
= 0

⇔ mmse
[
N |X + h(t)N

]
= 1− h(t)

t+ h(t)
=

t

t+ h(t)

⇔ tmmse(N |X + tN) = h(t)mmse(N |X + h(t)N).

The second result in Lemma 4 states that the equation tmmse(N |X+tN) = h(t)mmse(X|X+

h(t)N) has only three solutions t = 0, t∗, +∞ on [0,+∞]. By the continuousness property,
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L(t) has two local minimum points {0, +∞}, and one local maximum point {t∗}. It infers the
function L(t1, t2) has only two local minimum points (t1, t2) ≡ (−∞, 0) and (t1, t2) ≡ (0,+∞).

In other words, ([X], [N ]) is a unique local solution of the optimal problem (5). Theorem is

proven.

5. Discussion

Much more recently, Guo et al. in [7], and Payaró et al. in [11] have showed that: Let

any non-Gaussian variable X with continuously differentiable density and finite variance, and

any standard Gaussian variable N independent with X. Then the function I(X,
√
δX + N)

is a concave function with respect to δ. This result is very beautiful, but it can not solve

the Simplest case of ICA. The Theorem in this paper is not a generalization of above result.

However, it is a sufficient result for proving the Simplest case of ICA.

Moreover, the theory for the simplest case of ICA has a considerable signification in the way

to improve the theory for general linear case of ICA (i.e. the suitable transformation to make a

new representation of data is still a linear transformation). It is not difficult to see the theory for

general linear case of ICA will be done if we finish to solve the following problem: Finding a new

measure Ĩ for the statistical dependence of two random variables such that the Theorem can

be expand for the case “N be any random variable independent with X”. The problem can be

stated more clearly as follows: Finding a new measure for evaluating the statistical dependence

of any two random variables, Ĩ, which satisfies: Let X,Y be any independent random variables

with continuously differentiable density and finite variances. For any couple random variables

Y1, Y2 ∈ L(X,Y ), Y1, Y2 /∈ {(aX, bY )|a, b ∈ R}, then ∀ǫ > 0, ∃T ∈ R2×2, such that ‖T‖ 6 ǫ and

Ĩ(Y1, Y2) > Ĩ[(Y1, Y2)T ].

Some information measures have been studied carefully in many papers (see [5, 6]). We

trustfully believe that the results and technical proving in this paper is very useful for finding

measure Ĩ.
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[7] Guo, D., Shamai, S., and Verdú, S. (2005). Mutual information and minimum mean-square

error in Gaussian channels. IEEE Transactions on Information Theory, vol. 51, no. 4, pp.

1261-1282.
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