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Abstract The left restriction semigroups have arisen in a number of contexts, one
being as the abstract characterization of semigroups of partial maps, another as the
‘weakly left E-ample’ semigroups of the ‘York school’, and, more recently as a va-
riety of unary semigroups defined by a set of simple identities. We initiate a study of
the lattice of varieties of such semigroups and, in parallel, of their two-sided versions,
the restriction semigroups. Although at the very bottom of the respective lattices the
behaviour is akin to that of varieties of inverse semigroups, more interesting features
are soon found in the minimal varieties that do not consist of semilattices of monoids,
associated with certain ‘forbidden’ semigroups. There are two such in the one-sided
case, three in the two-sided case. Also of interest in the one-sided case are the va-
rieties consisting of unions of monoids, far indeed from any analogue for inverse
semigroups. In a sequel, the author will show, in the two-sided case, that some rather
surprising behavior is observed at the next ‘level’ of the lattice of varieties.

Keywords Restriction semigroup · Left restriction semigroup · Ample semigroup ·
Forbidden semigroup · Variety

1 Introduction

The restriction semigroups, in both the one- and the two-sided incarnations, have
risen to prominence at the confluence of several historical strands of research. The
left restriction semigroups, in particular, abstractly characterize semigroups of par-
tial maps of a set; both versions also arise at the ends of sequences of natural
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generalizations—if perhaps only in hindsight—of the ample semigroups introduced,
in other terminology, by Fountain [7, 8]. (The historical connection is witnessed by
the alternative names ‘weakly [left-] E-ample semigroups’.) The primary virtue of
this more recent viewpoint is that the classes under consideration form varieties un-
der natural signatures. The study of the lattices of varieties, in the respective contexts,
provides a systematic way to study known classes, and to discover new and interest-
ing classes, of such semigroups. Since our presentation will be largely self-contained,
based on the identities that define the classes under study, we have deferred to an ap-
pendix more explicit discussion of the connection between this approach and the
various historical strands alluded to above.

Ultimately the variety of restriction semigroups is, in fact, that generated by in-
verse semigroups, when the inverse operation in the latter is ‘forgotten’ and they are
considered as ‘biunary’ semigroups (S, ·,+ ,∗ ), where x+ = xx−1 and x∗ = x−1x;
the left restriction semigroups are the unary semigroups (S, ·,+ ) that result from
retaining only the former operation. Lying between inverse semigroups and ‘plain’
semigroups, similarities with the well-studied lattice of varieties of inverse semi-
groups decrease as more operations are forgotten, as might be expected.

We begin this investigation at the ‘bottom’ of the respective lattices, by consider-
ing the role of the variety M of monoids (which play here the role that groups play
for inverse semigroups) and then the lattice of subvarieties of the join of M with the
variety SL of semilattices, which are considered as restriction semigroups, appropri-
ate to the context. In either context, this join consists of the semilattices of monoids.
This material consists of fairly straightforward extensions of the theory of inverse
semigroup varieties.

Of more interest—and diverging from inverse semigroup theory—are the vari-
eties minimal with respect to not lying within this join, each corresponding to a
‘forbidden’ semigroup. In the case of restriction semigroups, there are three such
semigroups, namely the ‘upper and lower triangles’ B+ and B−, respectively, of the
bicyclic semigroup, and the subsemigroup B0 of the five-element Brandt semigroup
B2 that is obtained by omitting one of the two nonidempotents. The relationships
among the varieties they generate are also considered.

In the case of left restriction semigroups, a further layer appears: the varieties that
consist of unions of monoids (but not semilattices of monoids). These semigroups
seem to have received little, if any, specific attention heretofore, and warrant fur-
ther study. In the one-sided situation, there are instead two three-element ‘forbidden’
semigroups, L1

2 and D, relative to the join of M and SL. One discriminates varieties
of unions of monoids from those of semilattices of monoids; the second discriminates
the former from varieties in general.

While a few of our results no doubt simply place folklore in a varietal context, we
hope to stimulate further study of this topic. In a sequel [17], the author will consider
varieties generated by (the reducts of) Brandt semigroups, and in particular by the
semigroups B2 and B0. The situation is remarkably more complex than for inverse
semigroup varieties.

As mentioned below, Cornock in her thesis [3] has investigated varieties of [left]
restriction semigroups from a rather different perspective.
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2 Background

For the purposes of this work, it is appropriate to define [left] restriction semigroups
by means of their identities. A left restriction semigroup is a unary semigroup (S, ·,+ )

that satisfies

x+x = x; (
x+y

)+ = x+y+; x+y+ = y+x+; xy+ = (xy)+x.

(We take this particular definition from [12], where it is attributed to Jackson and
Stokes [15].) The last identity (or a variation of it) is often termed the ‘left ample’
condition.

From the first two identities it follows that for all x ∈ S, x+ is idempotent and
then, in conjunction with the second identity, that (x+)+ = x+. We term these idem-
potents the projections of S. Denote the set of projections by PS and the set of all
idempotents by ES . Although, by the third identity, PS is a semilattice, this need
by no means be true of ES . In the usual way, ES is partially ordered by e ≤ f if
e = ef = f e. (Note that, traditionally, the projections have often been termed ‘dis-
tinguished idempotents’ and the semilattice of distinguished idempotents has been
denoted E: see the Appendix for further discussion.)

The following consequences of the identities are well known. We include proofs
only to illustrate the usage of the identities.

Lemma 2.1 A left restriction semigroup satisfies x+ ≥ (xy)+ and (xy)+ = (xy+)+.

Proof Let S be such a semigroup and x, y ∈ S. Applying the first defining identity,
then the second and the fact that (x+)+ = x+, noted above, (xy)+ = (x+(xy))+ =
x+(xy)+, as required. Next, applying the left ample identity, then the second identity
and the inequality just obtained, (xy+)+ = ((xy)+x)+ = (xy)+x+ = (xy)+. �

A right restriction semigroup is a unary semigroup (S, ·,∗ ) that satisfies the ‘dual’
identities, obtained by replacing + by ∗ and reversing the order of each expression.
We shall make little explicit mention of such semigroups, since duality may be in-
voked to yield the analogues of results about left restriction semigroups.

A restriction semigroup is a biunary semigroup (S, ·,+, ∗) that is a left restriction
semigroup with respect to +, a right restriction semigroup with respect to ∗, and
satisfies (x+)∗ = x+ and (x∗)+ = x∗.

The term ‘restriction’ is relatively recent, deriving from its use by Cockett and
Lack [2] in one of the several sources of these semigroups (and of categories, in their
paper). Until quite recently, the term ‘weakly E-ample’ was used, providing evidence
of a succession of generalizations—by the so-called York school—of Fountain’s ‘am-
ple semigroups’ (though different terminology again was used in the original papers
[7, 8]). The definitions and fundamental properties provided below—and several of
the structural theorems that underpin the lattice-theoretical results found herein—
have precursors that we will not cite. In fact, when expressed in the language of
varieties and identities, many definitions (for example the generalized Green’s rela-
tions) have very simple formulations that require no knowledge of their historical
development.
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Nevertheless, in an appendix we provide a brief summary of the interpretation of
this background in the language of the York school. Much fuller exposition of this
material may be found in the work of Gould [11] and Hollings [13], for instance,
and in the thesis of Cornock [3]. This last citation in fact contains extensive work on
varieties of restriction semigroups, in both one- and two-sided guises, focusing on the
existence and construction of appropriate proper covers. We view the current paper
as complementary to her work. However, it will receive frequent mention.

In the context of this work, an inverse semigroup (S, ·,−1 ) may be regarded as
a restriction semigroup by setting x+ = xx−1 and x∗ = x−1x and ‘forgetting’ the
inverse operation. In that case, PS = ES . It may be regarded as a left [right] restriction
semigroup by admitting only the former [latter] operation. This source of examples
may be expanded upon by noting that any subsemigroup that is full (contains all its
idempotents) again induces such a [left, right] restriction subsemigroup. Each such
semigroup is, in fact, [left, right] ample (see the appendix).

For the purposes of this paper, the relevant generalized Green’s relations may be
defined as follows. In a left restriction semigroup, R = {(a, b) : a+ = b+}. The sec-
ond statement in Lemma 2.1 simply asserts that R is a left congruence. In a right
restriction semigroup, L = {(a, b) : a∗ = b∗}. In a restriction semigroup, H = L ∩ R.
It follows easily from Lemma 2.1 and its dual that each contains the corresponding
usual Green’s relation. In the case of a [left] restriction semigroup that is induced
from a (full subsemigroup of an) inverse semigroup, as above, each clearly coincides
with the restriction of the usual Green’s relation. Refer to the Appendix for the ratio-
nale behind this streamlining of the traditional notation R̃E , L̃E and H̃E .

In general, the terms ‘homomorphism’ and ‘congruence’ will be used appropriate
to context; that is, they should respect the unary operation for left restriction semi-
groups and both unary operations for restriction semigroups.

In the standard terminology, restriction semigroups S with |PS | = 1 are termed
reduced. Since, in essence, they are just monoids, regarded as restriction semigroups
by setting a+ = a∗ = 1 for all a, we will generally omit the qualifier ‘reduced’, except
in case of possible ambiguity. The least monoid congruence on a [left] restriction
semigroup S is denoted σ and is just the least semigroup congruence that identifies all
of its projections (as noted in [11]). Then, whether in a left restriction or a restriction
semigroup, a σ b if and only if ea = eb for some e ∈ PS . If S is an inverse semigroup,
σ is the least group congruence on S. (Once more, a fuller exposition may be found
in [3]).

A left restriction semigroup is proper if σ ∩ R = ι, where ι denotes the identical
relation. A restriction semigroup is proper if both this equation and its dual hold.
A proper cover for a [left] restriction semigroup S consists of a proper [left] restric-
tion semigroup T and a P -separating homomorphism from T onto S. The existence
of proper covers for restriction semigroups in general (there being many precursors)
was demonstrated in [10, Theorem 7.1]; a one-sided version was given by Cornock
[3, Theorem 1.9.6]. The author provided an elementary construction that covers both
cases in [16]. The details are not needed in the sequel.

Result 2.2 Every [left] restriction semigroup has a proper cover.
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On any type of restriction semigroup S, μ denotes the greatest congruence, of
the appropriate type, that is P -separating, that is, separates PS , and S is called fun-
damental if μ = ι. In particular, S/μ is fundamental. Although sometimes the one-
sided versions of these definitions have received names reflecting their origins, the
meanings of the terms will be clear from context in this paper. If S is a left restriction
semigroup, then μ is the largest (unary) congruence that is contained in R. It is well
known that if a, b ∈ S, then a μ b if and only if (ae)+ = (be)+ for all e ∈ P 1

S . In the
case of a restriction semigroup, μ is the greatest (biunary) congruence on S that is
contained in H. In this case, a μ b if and only if (ae)+ = (be)+ for all e ∈ PS , and if
and only if (ea)∗ = (eb)∗ for all e ∈ PS .

Lemma 2.3 If a [left] restriction semigroup S is proper, then σ ∩ μ = ι, so S is
a subdirect product of the monoid S/σ and the fundamental [left] restriction semi-
group S/μ.

Proof This is immediate from the definition of properness, since μ ⊆ R in either
situation. �

A +-ideal I of a left restriction semigroup S is an ideal of S that is also a left
restriction subsemigroup. It is easily seen that the Rees quotient semigroup S/I is
again a left restriction semigroup. We will term the obvious two-sided analogue a
restriction-ideal. (As usual, for technical reasons it is convenient to allow the empty
set to be an ideal and, in that case, to put S/I = S.)

2.1 Varieties and Free Objects

We refer the reader to standard texts such as [1] for universal algebraic background,
of which only the most basic is needed. We may treat the one-sided and two-sided
cases in parallel.

Denote by LR the variety of left restriction semigroups and by R the variety of
restriction semigroups, in the respective signatures.

In either context, T, M and SL will denote the varieties of trivial semigroups,
monoids, and semilattices, respectively. Either as a subvariety of LR or a subvariety
of R, M may be defined by the identity x+ = y+. Note that, in either context, subva-
rieties of M are essentially varieties of monoids, and we shall treat them as such. For
instance, MC refers to the variety of commutative monoids. The variety SL may be
defined by the identity x = x+ in either context. Care must be taken to distinguish this
variety from the variety MSL of semilattice monoids, defined by x+ = y+, x2 = x,
xy = yx. Note that a variety V of [left] restriction semigroups consists of monoids if
and only if V ∩ SL = T.

Other varieties will be introduced as needed. If S is a [left] restriction semigroup,
then V(S) will denote the variety of [left] restriction semigroups that it generates.
If V is a variety of [left] restriction semigroups, then L(V) denotes its lattice of
subvarieties.

The inverse semigroups, when regarded as [left] restriction semigroups, do not
form a variety in either context, since they are not closed under taking [left] restric-
tion subsemigroups. However, they play an important role, since LR and R are each
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generated by the (reducts of) inverse semigroups. This follows from the descriptions
of the free [left] restriction semigroups [9, 10] and also from quite elementary argu-
ments, as demonstrated by the author in [16]. Either from the cited descriptions, or
from the latter facts, the following can be obtained.

Result 2.4 Let X be a nonempty set. The free restriction semigroup FRX on X

is isomorphic to the subsemigroup of the free inverse semigroup FIX on X that
is generated, as a restriction semigroup, by X, and comprises the complete inverse
image of the free monoid on X under the homomorphism FIX −→ FGX onto the
free group on X.

The free left restriction semigroup FLRX is isomorphic to the subsemigroup of
FIX that is generated, as a left restriction semigroup, by X.

We only need the details of these representations in the monogenic case, that is,
when X = {x}. We use the representation inherent in the Munn representation of
free inverse semigroups [21]: its elements are uniquely representable in the form
(x−mxm)xk(xnx−n), where m,n,m + k,n + k,m + k + n ≥ 0 and not all of m,k,n

are zero. (Here x0 represents an adjoined identity.) Clearly such an element is mapped
to xk in the free group image. (The equivalent description in [22, Proposition IX.1.9]
instead uses the triple (m, k,n) to represent the product above.) A useful fact, true for
free inverse semigroups in general, is that FIx is combinatorial, that is, H= ι.

Result 2.5 In terms of the above representation of FIx and the operations in re-
striction semigroups, the elements of FRx may be uniquely expressed in the form
(xm)∗xk(xn)+, m,n, k ≥ 0, m + k + n ≥ 1. Under that representation, the relations
R and L are just the restrictions of the usual Green’s relations R and L, and so
H = ι. The projections of FRx are just its idempotents: the elements (xm)∗(xn)+,
m,n ≥ 0,m + n ≥ 1.

Result 2.6 In terms of the above representation of FIx and the operations in left re-
striction semigroups, the elements of FLRx may be uniquely expressed in the form
xk(xn)+, n, k ≥ 0, k + n ≥ 1. Under that representation, the relation R is the restric-
tion of the usual Green’s relation R.

The key equation for computation in monogenic left restriction semigroups is
xk(xn)+ = (xk+n)+xk , based on the left ample identity. In particular, (xk(xn)+)+ =
(xk+n)+. This provides a slightly more convenient representation of its elements: in
the form (xp)+xq , p ≥ 1, 0 ≤ q ≤ p. For a given value of p, the corresponding ele-
ments then comprise the R-class of xp in FLRx , since ((xp)+xq)+ = (xp)+(xq)+ =
(xp)+.

Two particular monogenic inverse semigroups play important roles in the general
theory and also in the study of varieties of inverse semigroups. Not surprisingly, their
reducts—more often the reducts of certain subsemigroups and quotients—will play
important roles in this paper.

Recall that the bicyclic monoid is presented, as a ‘plain’ monoid, by B = 〈a, b |
ab = 1〉 or, as a semigroup, by 〈a, b | a = aba = a2b, b = bab = ab2〉. As is well
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known, its elements are uniquely representable in the form bman, for nonnegative
integers m,n (where a0 = b0 = 1). It is an inverse monoid, where (bman)−1 = bnam,
and is presented as such by 〈a | aa−1 ≥ a−1a〉. If we put em = bmam, for m ≥ 0, then
EB is the semilattice 1 = e0 > e1 > e2 > · · ·.

Denote by B2 the five-element combinatorial Brandt inverse semigroup, with
semigroup presentation 〈a, b | aba = a, bab = b, a2 = b2 = 0〉 = {a, b, ab, ba,0}.
Regarded as an inverse semigroup, B2 = {a, a−1, aa−1, a−1a,0}.

2.2 Varieties of Inverse Semigroups

For reference in the sequel, we summarize the relevant facts. Denote by I the variety
of inverse semigroups, in the signature (·,−1 ), and by L(I) its lattice of subvarieties.
Denote by G the subvariety of groups and (once again) by SL the subvariety of semi-
lattices.

Result 2.7

(1) [22, Theorems XII.2.8, XII.3.2] On L(I), the map V −→ V ∨ G is a complete
lattice homomorphism and the map V −→ V ∩ G is a lattice homomorphism;

(2) [22, cf. Corollary XII.4.5] The join G ∨ SL consists of the semilattices of groups
(Clifford semigroups), and is defined by xx−1 = x−1x;

(3) [22, from Theorem XII.4.16] The sublattice L(G ∨ SL) of L(I) is isomorphic to
the direct product of the two-element lattice L(SL) and the lattice L(G), under
the map V �→ (V ∩ SL) ∨ (V ∩ G);

(4) [22, Proposition XII.4.13(ii)] The variety generated by B2 is the smallest variety
that does not consist of semilattices of groups.

3 Varieties of Restriction Semigroups

3.1 Joins and Meets with M

The behaviour of the variety M in the lattice of varieties of restriction semigroups
parallels that of the variety of groups in the lattice of varieties of inverse semigroups,
cited in Result 2.7 above.

Theorem 3.1 If V ∈ L(R), then V ∨ M = {S ∈ R : S/μ ∈ V}. Hence the map V −→
V ∨ M is a complete lattice homomorphism.

If V is defined by the identities ui = vi , i ∈ I , then V ∨ M is defined by the identi-
ties (uix)+ = (vix)+, i ∈ I , where x is a letter distinct from any in the original set of
identities.

Proof To prove the first assertion, suppose S/μ ∈ V. Let T be a proper cover of S,
according to Result 2.2. Then, by Lemma 2.3, S is a subdirect product of T/μ and
T/σ ∈ M. But the covering map T −→ S is P -separating and so T/μ ∼= S/μ ∈ V.
Hence T , and therefore S, belongs to V ∨ M.
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Conversely, any member S of V ∨ M is a homomorphic image of a (biunary)
subsemigroup W , say, of U = T × M , where T ∈ V and M ∈ M. Now the relation H

on U is clearly the product of the corresponding relations on T and M . Thus the same
is true of μ, so that U/μ ∼= T/μ × M/μ. But M/μ is trivial, so U/μ ∼= T/μ ∈ V.
Next, observe that the restriction η, say, of μ to W is P -separating, η ⊆ μW (the μ-
relation on W ) and so there is a homomorphism from W/η onto W/μW . But W/η ≤
U/μ. Hence W/μW ∈ V. Finally, if the surjective homomorphism W −→ S induces
the congruence ρ, say, on W , then the congruence (ρ ∨ μW)/ρ on S is P -separating
and therefore maps onto S/μ. Thus if W/μW ∈ V then S/μS ∈ V. This completes
the proof of the opposite inclusion.

The second assertion follows immediately.
The final statement follows from the description of the congruence μ in Sect. 2:

aμb if and only if (ae)+ = (be)+ for all e ∈ PS , noting that, by Lemma 2.1, the
second equation is equivalent to (ax)+ = (bx)+ for all x ∈ S. �

That the map V −→ V ∩ M is a homomorphism is best proved through con-
sideration of fully invariant congruences on free restriction semigroups. That is, it
needs to be shown that on the free restriction semigroup of infinite rank, the equation
(α ∨ σ) ∩ (β ∨ σ) = (α ∩ β) ∨ σ holds for any fully invariant congruences α and β .
In fact it holds in general, as a consequence of the next lemma, which generalizes the
well known result [22, Lemma III.5.4] for inverse semigroups.

Lemma 3.2 If ρ is any congruence on a restriction semigroup S, then ρ ∨ σ =
{(a, b) : eaρ eb for some e ∈ PS}. Hence for any congruences ρ and τ , (ρ ∨ σ) ∩
(τ ∨ σ) = (ρ ∩ τ) ∨ σ .

Proof Recall that σ = {(a, b) : ea = eb for some e ∈ PS}. Thus if ea ρ eb for some
e ∈ PS , then a σ ea ρ eb σ b. Conversely, suppose (a, b) ∈ ρ ∨ σ . Thus a ρ x1 σ y1 ρ

x2 · · · σ yn = b, for suitable elements of S. For i = 1,2, . . . , n, there exist ei ∈ PS

such that eixi = eiyi . Putting e = e1 · · · en, it follows by commutativity of PS that
e ∈ PS and ea ρ eb, as required.

Now if (a, b) ∈ (ρ ∨ σ) ∩ (τ ∨ σ), there exist e, f ∈ PS such that ea ρ eb and
fa τ fb. Then ef = fe ∈ PS and efa ρ ∩ τ efb. �

In view of the remarks above, the next result is now immediate.

Theorem 3.3 The map V −→ V ∩ M, V ∈ L(R) is a homomorphism.

We use the example given by Reilly (see [22, Example XII.3.6]), which demon-
strated that the variety of groups does not separate the lattice of varieties of inverse
semigroups, to show that M does not separate the lattice L(R).

Example 3.4 Let C = 〈a〉 be an infinite cyclic group and put G = C × C. Let S be
the Brandt semigroup M0(I,G, I,	) over G, where I = {1,2}. Let α1, α2 denote,
respectively, the identity map on G and the automorphism of G that sends (x, y) to
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(y, x). Let T = S ∪ G, where the multiplication extends that on S and G, and for
g ∈ G and (i, a, j) ∈ S,

g(i, a, j) = (
i, (gαi)a, j

)
and (i, a, j)g = (

i, a(gαj ), j
)
.

Then T is an inverse semigroup, H is a congruence and is thus μ, and T/μ ∼= B1
2 .

Regarding T and B1
2 as restriction semigroups, it follows from Theorem 3.1 that

V(T ) ⊆ V(B1
2 )∨M. We have to replace the identities used in the case of inverse semi-

group varieties by biunary ones. In fact, only the unary operation + is needed, which
will be of relevance in the sequel. We first show the identity xx+yy+ = yy+xx+ is
satisfied in T . If x, y ∈ G this is clear; if x is a nonidempotent of S, then xx+ = 0, and
similarly for y; if both x and y are idempotents (and thus projections), satisfaction is
also clear. The remaining case is, without loss of generality, when x ∈ G and y = e

is a nonzero idempotent of S, in which case xx+yy+ = yy+xx+ reduces to xe = ex.
But since H is a congruence, xe H e and so xe = exe = ex. As a consequence, any
monoid in V(T ) is commutative, that is, V(T ) ∩ M ⊆ MC. But C generates MC, so
equality holds.

Now put U = V(B1
2 ) ∨ MC. From the previous paragraph, V(T ) ∨ M = U ∨ M

and V(T ) ∩ M = MC = U ∩ M.
The identity (xy)+yx = (yx)+xy that we now apply will also appear in Propo-

sition 3.11. It is routinely checked that it is satisfied in B1
2 and thus in U. We now

show that it is not satisfied in T , so that U �= V(T ): if x = (2, (a,1),1) ∈ S and
y = (a,1) ∈ G, then xy = (2, (a2,1),1) and yx = (2, (a, a),1); but xy H yx, so
(xy)+(yx) = yx and (yx)+xy = xy, a contradiction. Thus we have proved the fol-
lowing.

Proposition 3.5 The variety of monoids does not separate the lattice R.

It should be noted that we chose to use Reilly’s example because it is well known.
The argument used above remains valid if the infinite cyclic group is replaced by the
infinite cyclic monoid, for instance; likewise, S may be replaced by certain of its full
subsemigroups.

Looking ahead to the next subsection, if V,W ∈ L(SL∨M) and V∨M = W∨M,
it follows from Theorem 3.8 that V ∩ SL = W ∩ SL. Thus M separates L(SL ∨ M).

3.2 Varieties of Restriction Semigroups Consisting of Semilattices of Monoids

In the context of restriction semigroups, the term S is a semilattice Y of monoids Sα

specifically requires that Y ∈ SL, that the map S −→ Y be a biunary homomorphism,
and that each Sα belong to M. The definition of strong semilattice of monoids requires
that the structure homomorphisms Sα −→ Sβ , α ≥ β , be monoidal (that is, respect
the identity elements).

A (biunary) subsemigroup T of a restriction semigroup S is a submonoid if it
contains a unique projection e, say, in which case a+ = a∗ for every a ∈ T and T

is contained in eH. Conversely, it is well known that any H-class that contains a
projection is a maximal submonoid.
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The structural aspects, at least, of the following theorem are presumably folklore
and date back, in the case of ample semigroups and beyond, to the work of Foun-
tain [8]. That every strong semilattice of monoids is a restriction semigroup may be
explicitly found in the thesis of Cornock [3, Sect. 1.6].

As a result of the following theorem, the class SM of all restriction semigroups
that are semilattices of monoids is the subvariety SL ∨ M of R. This theorem is a
direct analogue of Result 2.7(2).

Theorem 3.6 The following are equivalent for a restriction semigroup S:

(i) S ∈ SL ∨ M;
(ii) S satisfies x+ = x∗;

(iii) L = R (= H);
(iv) S is a semilattice of monoids;
(v) S is a union of monoids;

(vi) S/μ ∈ SL;
(vii) PS is central in S;
(viii) S satisfies (xy)+ = x+y+;

(ix) S is a strong semilattice of monoids.

Proof (i) ⇒ (ii). The stated identity is satisfied in SL and in M and therefore in their
join.

(ii) ⇒ (iii). This is immediate from the definitions.
(iii) ⇒ (iv). Assuming L = R, then H is a (biunary) congruence. Moreover, since

aRa+, S/H is a semilattice (regarded as a restriction semigroup). Each H-class con-
tains a unique member of PS , since that is true of R, and that projection must be
a+ = a∗ for each a in the class, so that the projection is its identity.

(iv) ⇒ (v) is clear. That (v) ⇒ (ii) follows from the remarks in the second para-
graph of this subsection.

(iv) ⇒ (vi). If S is a semilattice of monoids, denote by ρ the induced semilattice
congruence. Then ρ is P -separating and so contained in μ. But then S/μ is isomor-
phic to a quotient of S/ρ and so belongs to SL.

(vi) ⇒ (i). This is immediate from Proposition 3.1.
(ii) ⇒ (vii). Let e ∈ PS and a ∈ S. Using (ii), (ae)+ = (ae)∗ = a∗e = ea+, whence

ae = (ae)+a = ea.
(vii) ⇒ (viii). Let a, b ∈ S. Then (ab)+ = (ab+)+ = (b+a)+ = b+a+ = a+b+.
(viii) ⇒ (vii). Let e ∈ PS and a ∈ S. Then ae = (ae)+a = a+ea = ea.
(vii) ⇒ (ii). Let a ∈ S. Using (vii), a+ = (aa∗)+ = (a∗a)+ = a∗a+, that is, a+ ≤

a∗. Equality follows by duality.
(iii) ⇒ (ix). According to the proof of (iii) ⇒ (iv), S is the semilattice Y = S/H

of the monoids Se = eH, e ∈ PS . Let e, g ∈ PS , e ≥ g. Define φeg : Se → Sg by
aφeg = ga. Since by the previous implications, PS is central in S, φeg is a (biunary)
homomorphism. The system thus defined is clearly transitive and for a ∈ Se, b ∈ Sf ,
ab = (ef )ab = (ef )a(ef )b, as required. �

Clearly, any restriction semigroup that is a semilattice of monoids as a restriction
semigroup is also a semilattice of monoids as a ‘plain’ semigroup. It has the additional
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property that the identity elements of the monoids form a subsemilattice, which is not
true for semilattices of monoids in general (for example, let M be any monoid with
a zero element and adjoin an element e such that em = me = 0 for all m ∈ M). We
now show that the converse holds.

Proposition 3.7 Let S be any semigroup that is a semilattice Y of monoids Sα , α ∈ Y ,
the identity elements of which form a subsemilattice of S. For a ∈ S, let both a+ and
a∗ be the identity element of the submonoid Sα to which a belongs. Then (S,+ ,∗ ) is
a restriction semigroup that is a semilattice of monoids, in that context.

Proof The axioms for a restriction semigroup are routinely verified, x+y+ = y+x+
following from the additional assumption on S. Since Y itself becomes a restriction
semigroup by putting α+ = α∗ = α, the additional requirements in that context are
also satisfied. �

The next theorem is a direct analogue of Result 2.7(3).

Theorem 3.8 The sublattice L(SM) = L(SL ∨ M) of L(R) is isomorphic to the
direct product of the two-element lattice L(SL) and the lattice L(M), under the map
V �→ (V ∩ SL) ∨ (V ∩ M). If V is not simply a variety of monoids, then it consists of
all (strong) semilattices of monoids from V ∩ M.

Proof According to Theorem 3.3, the map V −→ V ∩ M is a homomorphism, which
is clearly surjective. Likewise, the map V −→ V ∩ SL is a surjective morphism.
(Since SL is an atom in the lattice of varieties, the only potential nontrivial case
to consider is when V,W are varieties such that V ∩ SL = W ∩ SL = T; but then V
and W are varieties of monoids and thus so is V ∨ W.)

Let V ∈ L(SM), with V �∈ M. Thus SL ⊆ V. We must show that V = SL ∨ N,
where N = V ∩ M. Now by Theorem 3.6, S is (isomorphic to) a strong semilat-
tice of monoids Se, e ∈ PS , where each of these (sub)monoids belongs to N. The
required outcome follows from a rather straightforward modification of the standard
semigroup-theoretic arguments, cf. [14, Proposition 4.6.11], so we omit the details. �

3.3 Some ‘Forbidden’ Restriction Semigroups

We study the basic properties of three restriction semigroups that in the next subsec-
tion will be shown to characterize, by their exclusion, varieties consisting of semi-
lattices of monoids. They correspond, as we shall see there, to three possible ways
in which that can occur: it must contain a restriction semigroup S that possesses an
element a for which a+ �= a∗, so that either a+ > a∗, a+ < a∗, or a+ and a∗ are
incomparable. Although these examples have appeared in the literature, their impor-
tance does not seem to have been recognized.

These three examples derive from either the bicyclic semigroup B or the five-
element Brandt semigroup B2. Those semigroups, which were introduced and briefly
described in Sect. 2.1 as inverse semigroups, will now be treated as restriction semi-
groups. The examples we introduce are not themselves inverse semigroups, however.
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Regarding B as a restriction semigroup, and recalling the notation em = bmam,
m ≥ 0, (bman)+ = em, for all n ≥ 0, and (bman)∗ = en, for all m ≥ 0. Thus PB =
EB = {em : m ≥ 0}.

Let B+ be the ‘upper triangle’ of B: {bman ∈ B : n ≥ m}. As a full subsemigroup
of B , B+ is a restriction semigroup (in fact, it is ample) under the induced operations.
The members of B+ can, alternatively, be uniquely represented in the form (am)∗ak ,
where m,k ≥ 0. Therefore B+ is indeed generated by a, as a restriction semigroup.
Under that representation, ((am)∗ak)+ = (am)∗ and ((am)∗ak)∗ = (am+k)∗. It is also
clear that B+ is the complete inverse image, under the homomorphism onto Z, of
the nonnegative integers. In fact, the congruence so induced on B+ is precisely the
least monoid congruence σ . That is, (am)∗ak σ (an)∗a� if and only if k = � or, in the
original notation, bman σ bka� if and only if n − m = � − k.

The semigroup B+ and its dual were studied by Makanjuola and Umar [20], who
first showed they are ample. Descalço and Ruškuc [4] made a general study of the
subsemigroups of B , regarded as a ‘plain’ semigroup; Descalço and Higgins [5] went
on to study those subsemigroups that are ‘abundant’, which in our context means
ample and, therefore, restriction semigroups.

Proposition 3.9 Regarding B+ as a restriction semigroup:

(i) it satisfies the identity x+ ≥ x∗;
(ii) it is presented by 〈a | a+ ≥ a∗〉;

(iii) any of its proper congruences identifies all its projections, so that its nontrivial
homomorphic images are cyclic monoids (regarded as restriction semigroups);

(iv) it is proper.

Proof (i) This is immediate from the earlier calculations: (bman)+ = em, (bman)∗ =
en, and n ≥ m.

(ii) Temporarily, put P = 〈a | a+ ≥ a∗〉. Refer to the description of FRx in Re-
sult 2.5. Mapping x to a, FRx maps onto P , so the elements of P are expressible
in the form (am)∗ak(an)+. From a+ ≥ a∗ it follows that a = aa∗ = aa+a∗ = aa+.
Thus a+ is an identity element of P . Further, a+ = (aa+)+ = (a2)+ and, by in-
duction, a+ = (an)+ for every n ≥ 1. Hence, the elements of P are expressible as
(am)∗ak . Since B+ satisfies the defining relation and these elements are distinct
therein, B+ ∼= P .

(iii) Let ρ be a congruence on B+ and suppose that (am)∗ak ρ (an)∗a�, using
the alternative representation above. Then since ρ respects the two unary opera-
tions, (am)∗ ρ (an)∗ and (am+k)∗ ρ (an+�)∗. It suffices, therefore, to show that if
there exist i < j such that (ai)∗ ρ (aj )∗ then ρ identifies all the projections. Un-
der that hypothesis, since the projections are linearly ordered, (ai)∗ ρ (ai+1)∗ and
so (ai)∗ ρ (ak)∗ for all k > i. In particular, (ai)∗ ρ (a2i )∗. Then, using the identities
for right restriction semigroups, (ai)∗ai = ai((ai)∗ai)∗ = ai(a2i )∗ ρ ai(ai)∗ = ai .
Since a+ = (ai)+ and ((ai)∗ai)+ ≤ (ai)∗ ≤ a∗, it follows that a+ρ ≤ a∗ρ, that is
a+ρ = a∗ρ, in which case a+ρ = (am)∗ρ for all m ≥ 1 and B+/ρ is a monoid.

(iii) This is immediate from the calculations prior to this proposition. �

The second exceptional semigroup, B−, is the dual B+ in the sense stated during
the definition of right restriction semigroups in Sect. 2. Concretely, B− is the ‘lower
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triangle’ in B: {bman ∈ B : n ≤ m}, In that case, b∗ is the identity element of B−.
All the properties that we shall need of B− follow from those of B+, by duality. In
particular, it satisfies the identity x+ ≤ x∗.

The third semigroup, B0, is the restriction subsemigroup of the five-element
Brandt semigroup B2 that is generated by a. (We follow the terminology of [18]. In
[6] it was denoted S(4,21).) Regarded as a restriction semigroup, B2 = {a, b, a+ =
b∗, a∗ = b+,0}. Thus B0 = {a, a+, a∗,0}, where a+ and a∗ are incomparable pro-
jections. Observe that the only pairwise products that do not yield 0 are a+a+, a∗a∗,
a+a and aa∗. Edmunds [6] provided a set of defining identities for the semigroup
variety generated by B0, among which are the last two in the next statement. The first
identity is straightforwardly verified (and is, in fact, satisfied in B2).

Lemma 3.10 The restriction semigroup B0 satisfies the identities x2 = x+x∗, x3 =
x2 and xyx = x2y2.

The following will prove useful in several circumstances.

Proposition 3.11 Any proper restriction semigroup S such that S/σ is commuta-
tive satisfies the identity (yx)+xy = (xy)+yx. In particular, it is satisfied in the free
monogenic restriction semigroup FRx and thus in B+, B− and B0 (even though B0
is not itself proper).

Proof Since S/σ is commutative, (yx)+xy σ (xy)+yx. But ((yx)+xy)+ =
((yx)+(xy)+)+ = (yx)+(xy)+ and, similarly, ((xy)+yx)+ = (xy)+(yx)+. So
(yx)+xy R (xy)+yx and equality then follows from properness. �

3.4 Minimal Varieties of Restriction Semigroups That Do Not Consist of
Semilattices of Monoids

According to Result 2.7(4), there is a unique variety of inverse semigroups, minimal
with respect to the property that it does not consist of semilattices of monoids: that
generated by B2. The key to the analogue for restriction semigroups is the following.

Lemma 3.12 Let S be a restriction semigroup and a ∈ S. Either (i) a+ > a∗, in
which case a generates a semigroup isomorphic to B+, or (ii) a+ < a∗, in which
case a generates a semigroup isomorphic to B−, or (iii) a+ ‖ a∗, in which case B0
divides S, or (iv) a+ = a∗, in which case a belongs to a submonoid of S.

Proof Let T be the restriction subsemigroup generated by a. In case (i), T is a homo-
morphic image of B+, by virtue of Proposition 3.9(ii). But since T is not a monoid,
by (iii) of the same proposition it must be isomorphic to B+. The case (ii) is dual.

In case (iii), consider once again the homomorphism from FRx upon T that maps
x to a. Within FRx , the complement I of {x, x+, x∗} constitutes a restriction-ideal.
In the notation of Result 2.5, I = {(xm)∗xk(xn)+ : m + k + n ≥ 2}. The image K

of I in T is again a restriction-ideal. We show that it is, likewise, the complement
of {a, a+, a∗}. Since if a ∈ K , then a+ ∈ K , it suffices, by duality, to show that
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a+ �∈ K . If not, a+ = (am)∗(an)+, for some m,n ≥ 0, m+n ≥ 2. If m �= 0 then a+ ≤
(am)∗ ≤ a∗. So m = 0, n ≥ 2 and a+ ≤ (an)+ ≤ (a2)+, in which case a+ = (a2)+
and a = (a2)+a = (aa+)+a = aa+. But this yields the contradiction a∗ ≤ a+.

The Rees factor semigroup T/K is therefore isomorphic to B0.
In case (iv), a belongs to the submonoid eH, where e = a+ = a∗. �

Denote by B+, B− and B0 the varieties of restriction semigroups generated by
B+, B− and B0, respectively. The main result of this section is the following.

Theorem 3.13

(1) Any variety of restriction semigroups that does not consist of semilattices of
monoids contains either B+, B− or B0.

(2) The varieties B+, B− and B0 are the three varieties minimal with respect to not
being contained in SM.

Proof (1) Let V be such a variety. As remarked at the beginning of the previous
subsection, V must contain a restriction semigroup S that contains an element a such
that either a+ > a∗, a+ < a∗, or a+ and a∗ are incomparable. Lemma 3.12 now
yields the desired conclusion.

(2) Clearly none of the three varieties is contained in SM. In view of (1), to prove
each is minimal with respect to that property it suffices to show that none of the three
varieties contains the generating semigroup of either of the others. That this is true
for B+ is immediate from the fact that it satisfies x+ ≥ x∗, and similarly for B−.

To show it is true for B0, we first show that B0 ∩ M = T. Any restriction monoid
in B0 satisfies x2 = x+x∗ = 1, from which the identity x3 = x2 implies x = 1. Since
B+ and B− each contain the infinite cyclic monoid, neither is contained in B0. �

The relationships among these varieties are now investigated further. Recall that
MC denotes the variety of commutative monoids.

Proposition 3.14

(1) B+ and B− each cover SL ∨ MC and thus B+ ∩ B− = SL ∨ MC.
(2) B0 covers SL.

Proof (1) By Proposition 3.11, the identity (yx)+xy = (xy)+yx is satisfied in B+,
so any monoid in B+ is commutative. But B+ contains the infinite cyclic monoid
and therefore all commutative monoids. So B+ ∩ M = MC and, since SL ⊂ B+,
applying Theorem 3.8 yields B+ ∩ SM = SL ∨ MC. The covering property follows
from Theorem 3.13(2).

By duality, and since B+ and B− are incomparable, their intersection is therefore
SL ∨ MC.

(2) That B0 ∩ M = T was shown in the course of proving Theorem 3.13(2). Then,
again applying Theorem 3.8, B0 ∩ SM = SL and the covering is obvious. �

Proposition 3.15 (1) B+ ∨ B− = V(FRx); therefore (2) B+ ∨ B− contains B0.
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Proof (1) See Result 2.5 for the requisite properties of FRx . Since B+ and B− are
monogenic, they each belong to V(FRx). To show FRx ∈ B+ ∨ B−, let R denote the
restriction subsemigroup of B− × B+ generated by the element r = (b, a). The map
x �→ r extends to a homomorphism φ : FRx −→ R. Since H = ι on FRx , it suffices
to show that φ separates the projections of FRx , for then it must be an isomorphism.
Evaluating the projection (xm)∗(xn)+ (where m,n ≥ 0,m + n ≥ 1) in R, we ob-
tain ((bm)∗, (am)∗)((bn)+, (an)+) = (1, (am)∗)((bn)+,1) = ((bn)+, (am)∗). Since
the idempotents (bn)+ are distinct in B− and likewise the idempotents (am)∗ are
distinct in B+, the same is true for the specified idempotents in R, as claimed.

(2) Since B0 is monogenic, this follows from (1). �

Corollary 3.16 Any variety of restriction semigroups that does not contain B0 is
contained in either the variety defined by x+ ≥ x∗ or the variety defined by x+ ≤ x∗.

Proof From (2) of the proposition, it follows from Lemma 3.12 that if B0 �∈ V, then
either a+ ≥ a∗ for all a ∈ S and for all S ∈ V, or the dual statement holds. �

Proposition 3.17

(1) The bicyclic semigroup B is not contained in the join of the varieties defined by
x+ ≥ x∗ and x+ ≤ x∗, respectively;

(2) thus B+ ∨ B−
� V(B).

Proof (1) It suffices to show that the identity (xy)∗x+y+ ≤ (x+y)∗ is a consequence
of each of the identities x+ ≥ x∗ and x+ ≤ x∗, but is not satisfied in B . From x+ ≥
x∗ it follows, using (the dual of) Lemma 2.1 that (xy)∗ = (x∗y)∗ = (x∗(x+y))∗ ≤
(x+y)∗; from x+ ≤ x∗ it follows that x+y+ = (x+y)+ ≤ (x+y)∗. In either case, the
stated inequality holds.

Now substitute x = b and y = a from B . Here x+ = b+ = a∗, y+ = a+ = 1,
(xy)∗ = (ba)∗ = ba = a∗, so the left hand side yields a∗. But (x+y)∗ = (a∗a)∗ =
(a2)∗ and a∗ > (a2)∗ in B .

(2) Containment follows from the fact that B+ and B− are restriction subsemi-
groups of B . Strictness follows from (1) and Proposition 3.9(i) and its dual. �

Proposition 3.18 B− /∈ B0 ∨ B+ and B+ /∈ B0 ∨ B−.

Proof It suffices to prove the former statement. The identity x+ ≥ (x2)∗ holds in B0,
as a consequence of the first identity specified in Lemma 3.10. It also holds in B+
since from x+ ≥ x∗ we obtain x∗ = (x+x)∗ ≥ (x∗x)∗ = (x2)∗. However this identity
fails in B− because b+ = ba < (b2)∗ = a2b2 = 1. �

The varieties generated by B0 and B2, and their joins with M, will be studied in
depth in the sequel [17].
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4 Varieties of Left Restriction Semigroups

4.1 Joins and Meets with M

The proofs of the two theorems on the corresponding topic for restriction semigroups
need almost no modification to yield their analogues for left restriction semigroups.
(Note that the defining property of μ, and its description, must be appropriately mod-
ified in the proof of Theorem 3.1; also note that the proof of Lemma 3.2 was written
in such a way that it remains valid in the one-sided situation.)

Theorem 4.1 If V ∈ L(LR), then V ∨ M = {S ∈ LR : S/μ ∈ V}. Hence the map
V −→ V ∨ M is a complete lattice homomorphism.

If V is defined by the identities ui = vi , i ∈ I , then V ∨ M is defined by the identi-
ties u+

i = v+
i and (uix)+ = (vix)+, i ∈ I , where x is a letter distinct from any in the

original set of identities.

Theorem 4.2 The map V −→ V ∩ M, V ∈ L(R) is a homomorphism.

Analysis of the proof that M does not separate L(R) (Proposition 3.5) reveals that
the operation ∗ was never used. Thus, when all the semigroups considered therein are
instead regarded as left restriction semigroups, the argument also proves the analo-
gous result.

Proposition 4.3 The variety of monoids does not separate the lattice LR.

Once again, the example used in the proof could be considerably simplified to
provide the same outcome.

4.2 Varieties of Left Restriction Semigroups That Consist of Semilattices of
Monoids

Referring to Sect. 3.2, we shall use the same notation, SM, to denote here the class
of left restriction semigroups that are semilattices of monoids, with the analogous
constraints on the components. As a result of the next theorem, SM is a subvariety
of LR.

Once again, it is clear that in such a semigroup the identity elements of the com-
ponent monoids form a semilattice. Thus by Proposition 3.7, every such semigroup
is in fact a restriction semigroup and Theorem 3.6 can be applied, in the cases that do
not make reference to the second unary operation.

Theorem 4.4 The following are equivalent for a left restriction semigroup S:

(i) S ∈ SL ∨ M;
(ii) S satisfies xy+ = y+x, that is, PS is central in S;

(iii) S satisfies (xy)+ = x+y+;
(iv) S becomes a restriction semigroup under the assignment a∗ = a+, a ∈ S.
(v) S is a semilattice of monoids;
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(vi) S is a strong semilattice of monoids.

Proof The identity in (ii) is satisfied in SL and in M and so in their join. Therefore
(ii) follows from (i). The equivalence of (ii) and (iii) uses the same argument as that
of (vii) and (viii) in Theorem 3.6. That (ii) implies (iv) is immediate from the duality
that yields the identities for right restriction semigroups. Now the equivalence of (iv),
(v) and (vi), and the implication (v) ⇒ (i) follow from Theorem 3.6 itself. �

The following is then obtained from Theorem 3.8. Again, it is a direct analogue of
Result 2.7(3).

Theorem 4.5 The sublattice L(SM) of L(LR) is isomorphic to the direct product
of the two-element lattice L(SL) and the lattice L(M), under the map V �→ (V ∩
SL)∨ (V ∩ M). If V is not simply a variety of monoids, then it consists of all (strong)
semilattices of monoids from V ∩ M.

4.3 Varieties of Left Restriction Semigroups That Consist of Unions of Monoids

It was seen in Theorem 3.6 that a restriction semigroup that is a union of submonoids
is necessarily a semilattice of monoids. The semigroup B+, regarded as a left re-
striction semigroup, illustrates that this is no longer true in the one-sided case: see
Proposition 4.7 below. First we clarify the form of the maximal submonoids in left
restriction semigroups.

Lemma 4.6 The maximal submonoids of a left restriction semigroup have the form
Me = eR ∩ eSe, e ∈ PS . Alternatively, Me = {a ∈ S : a+ = e, ae = a}.

Proof Let e ∈ PS . If a, b ∈ eR ∩ eSe, then (ab)+ = (ab+)+ = (ae)+ = a+ = e, so
Me = eR ∩ eSe is a subsemigroup that is clearly a submonoid. Conversely, if M is
any submonoid of S, with projection e, then clearly M ⊆ Me. The second statement
is just a reformulation of the first. �

A plentiful source of examples for this subsection is found among the subsemi-
groups of the left restriction semigroup B+, which was studied as a restriction semi-
group in Sect. 3.3.

Proposition 4.7 Regarded as a left restriction semigroup, B+ is the union of its
infinite cyclic submonoids Mem = {bman : n ≥ m}, m ≥ 0. Every left restriction sub-
semigroup of B+ is a union of monoids. Such a subsemigroup is not a semilattice of
monoids unless it is either (a) a subsemilattice, (b) a submonoid or (c) the union of
a nontrivial submonoid of some Mem with a set of projections ek , k < m.

Proof For a given m ≥ 0, direct calculation shows that Mem = {bman : n ≥ m}.
Clearly B+ is the union of these submonoids. Note that Mem is generated, as a
monoid, by the element am = ema = bmam+1 and so it is infinite cyclic. Now if T

is a left restriction subsemigroup of B+ that is not a subsemilattice, it contains some
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element c = bman, m ≥ 0, n > m; if, further, T does not satisfy (c), then it contains a
projection ek , k > m. Now by taking powers of c, if necessary, it may be assumed that
n > k and direct calculation in B then shows that (cek)

+ = c+ = em but (ekc)
+ = ek .

So the projections of T are not central and Theorem 4.4 applies. �

As a result of the next theorem, the class UM of left restriction semigroups that
are unions of monoids is a subvariety of LR.

Theorem 4.8 The following are equivalent for a left restriction semigroup S:

(i) S is a union of monoids;
(ii) S satisfies xx+ = x;

(iii) S satisfies x+ = (x2)+;
(iv) for each a ∈ S, {a+} ∪ {ai : i ≥ 1}, is a submonoid, which is the left restriction

subsemigroup generated by a;
(v) each R-class is a submonoid.

Proof Clearly, if S is a union of monoids, a ∈ Ma+ for any a ∈ S, so aa+ = a.
The equivalence of (ii) and (iii) follows immediately from the equation xx+ =
(xx+)+x = (x2)+x. By induction, the identity in (iii) implies satisfaction of x+ =
(xn)+ for all n ≥ 1, from which (iv) follows. If (iv) holds, then (i) is clear. Finally,
from (ii) it follows that if a+ = b+, then (ab)+ = (ab+)+ = (aa+)+ = a+, so that
each R-class is a subsemigroup, which is clearly then a submonoid of S. Once again,
if (v) holds, (i) is clear. �

The lattice L(UM) appears to be much more complicated in structure than L(SM)

and warrants further study. In addition to determining the unique semigroup that dis-
criminates varieties of semilattices of monoids from varieties of unions of monoids
in general (Sect. 4.5), we will content ourselves with the following straightforward
observations.

Corollary 4.9 Every left restriction semigroup that is a union of monoids has a
proper cover of the same type. In fact all of its proper covers are unions of monoids.

Proof By Result 2.2, every such semigroup has a proper cover, so it suffices to prove
the second statement. We apply (iii) from the theorem. Suppose T is a proper cover
of the union of monoids S, via the homomorphism φ, and let a ∈ T . Then a+φ =
(a2)+φ. Since φ separates projections, a+ = (a2)+. �

We regard monoid identities over an alphabet X as equalities of words in the free
monoid X∗ on X. The content of such a word is the set of members of X (possibly
empty) that appear in the word. Regarded as identities of left restriction semigroups,
1 needs to be replaced by x+ (where x+ = y+ is the identity defining monoids within
the latter class of semigroups).

Proposition 4.10 Let u(x1, . . . , xm) = v(y1, . . . , yn) be a nontrivial monoid identity.
Denote by p the product of the terms z+, over the union of the contents of the two
words. Let S ∈ UM. The following are equivalent:
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1. Me satisfies the identity u(x1, . . . , xm) = v(y1, . . . , yn) for all e ∈ PS ;
2. S satisfies the identity pu(p x1, . . . , pxm) = pv(py1, . . . , pyn).

Let N be a variety of monoids. Then the class UN of (left restriction semigroups that
are) unions of monoids from N is a subvariety of UM, whose identities are obtained
from those of N as above, and UN = {S ∈ UM : Me ∈ N ∀e ∈ PS}.

Proof If S satisfies the second identity, then in any submonoid T all the terms z+
evaluate to the identity of T and so the original identity holds in T . Conversely, sup-
pose each submonoid satisfies the original identity. If the second identity is evaluated
in S, then the evaluation of p in S is a projection, each (p xi)

+ = px+
i = p and, simi-

larly, each (pyj )
+ = p. Assuming the first identity holds in Mp , the second therefore

holds in S. �

For instance, UMC is defined within UM by (x+y+x)(x+y+y) =
(x+y+y)(x+y+x), or just y+xy = x+yx, using the identity for UM given in Theo-
rem 4.8(ii).

An interesting question arises from the following result of Cornock. A [left] re-
striction semigroup has a proper cover over a variety N of monoids if it has a proper
cover T such that T/σ ∈ N.

Result 4.11 [3, Theorems 9.6.2 and 10.3.4] For any variety N of monoids, the class
N̂ of left restriction semigroups having a proper cover over N forms a variety, defined
by the set of identities v+u = u+v, where u = v is a monoid identity satisfied in N.

In light of Corollary 4.9, this result remains true within the confines of unions
of monoids, that is, for the variety N̂ ∩ UM. It is easily seen that this variety is a
subvariety of UN and the question arises as to whether the inclusion can be strict.

For example, notice that the identity (yx)+xy = (xy)+yx is a consequence of
y+xy = x+yx, so every member of UMC has a proper cover of the same type, that
is, UMC = M̂C ∩ UM. Similarly, equality holds for the variety MSL of semilattice
monoids.

Of interest in a different direction, in light of Proposition 4.3, is the question
whether or not M separates the lattice L(UM).

4.4 Some ‘Forbidden’ Left Restriction Semigroups

We introduce and study the basic properties of several left restriction semigroups that
will appear in the next two subsections. The inverse semigroups B and B2, together
with the restriction subsemigroups B+, B− of B and the restriction subsemigroup
B0 of B2 that were introduced in Sect. 3.3, will now be treated as left restriction
semigroups.

The first semigroup of note is the three-element left restriction subsemigroup D =
{a, a+,0} of B0 and, ultimately, of B2. We use the notation of [19]. (It was denoted
S(2,4) in the survey [6] of small semigroups.) The only pairwise products in D that
do not yield 0 are a+a and a+a+.
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Lemma 4.12 The left restriction semigroup D may be presented as such by
〈a | aa+ = (a2)+〉 and satisfies the identity xx+ = (x2)+. It is not a union of
monoids.

Proof As previously noted, xx+ = (x2)+x in any left restriction semigroup, as a
consequence of the left ample identity. Since a2 = 0 in D, the relation aa+ = (a2)+
is clear. Now if S = 〈a | aa+ = (a2)+〉, then (a2)+ = aa+ = (a2)+a, (a2)+ =
(a2)+a2 = a2 and, by induction, (a2)+ = ap for all p ≥ 2. According to Result 2.6,
S = {(ap)+aq : p ≥ 1,0 ≤ q ≤ p}, where for p ≥ 2, (ap)+aq = (a2)+aq = (a2)+.
Since only a+ and a remain to be considered, |S| ≤ 3 and so S ∼= D.

As just noted, the identity xx+ = (x2)+ is satisfied when x = a. Otherwise, x is a
projection and it is clearly satisfied.

Since aa+ = 0, D is not a union of monoids. �

The second semigroup of note is the left restriction subsemigroup B+
01 = Me0 ∪

Me1 of B+ and, ultimately, of B . It is routinely verified that B+
01 is indeed a subsemi-

group. For convenience, let c = e1a, the generator of Me1 .

Proposition 4.13 Regarding B+
01 as a left restriction semigroup:

(i) it is a union of monoids, but not a semilattice of monoids;
(ii) it is presented by 〈a, c | ac+ = a, c+a = c〉;

(iii) its μ-classes are the sets {e0}, {an : n ≥ 1} and Me1 ;
(iv) it is proper, bka� σ bman if and only if � − k = n − m, and B+

01/σ is an infinite
cyclic monoid;

(v) it belongs to UMC and so satisfies y+xy = x+yx.

Proof (i) This is a special case of Proposition 4.7.
(ii) Me0 and Me1 are generated, respectively, by a and c, so B+

01 is generated by
{a, c}. The first equation holds because c+ = e1 = ba and a(ba) = a, the second from
the definition of c.

Now let S be the left restriction semigroup presented as stated. Then c+ =
(c+a)+ = c+a+, that is, c+ ≤ a+. So aa+ = (ac+)a+ = ac+ = a. As in the proof
of Theorem 4.8, (an)+ = a+ for n ≥ 1 and so a generates a submonoid, with iden-
tity a+. Similarly, cc+ = (c+a)c+ = c+(ac+) = c+a = c and c generates a sub-
monoid, with identity c+. Further, ac = a(c+a) = (ac+)a = a2 and so aicj = ai+j ,
for i ≥ 1, j ≥ 0. (However, a0c = a+c = c.) Similarly, ca = (cc+)a = c(c+a) = c2

and so ciaj = ci+j for i ≥ 0, j ≥ 1. Thus S is the union of the submonoids generated
by a and c.

Finally, the powers of a and of c are distinct in B+
01 and so the map from S onto

that semigroup is an isomorphism.
(iii) Recall that on an arbitrary left restriction semigroup S, x μ y if and only

if (xe)+ = (ye)+ for all e ∈ P 1
S . Since the only projections of B+

01 are the identity
element e0 and e1, x μ y if and only if (xe1)

+ = (ye1)
+. Thus μ identifies all the

powers of c with c+ = e1; it also identifies all the positive powers of a with a itself,
since aic+ = ai for all i ≥ 1. But μ does not identify a with a+ (for otherwise it also
identifies e1 = c+ = a+c+ with ac+ = a and thus with a+ = e0.)
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(iv) This follows either by direct calculation or from observing that σ is the re-
striction to B+

01 of the least group congruence on B itself.
(v) This is a consequence of the comments following Proposition 4.10. �

The third semigroup of note, denoted L1
2, is obtained from the two-element left

zero semigroup L2 = {e, f } by adjoining an identity 1, setting e+ = e and f + =
1+ = 1. It is routinely verified that it is a left restriction semigroup. Note that, when
regarded as a ‘plain’ semigroup, L1

2 is a monoid, but not when regarded as a left
restriction semigroup.

Proposition 4.14 The left restriction semigroup L1
2

(i) is isomorphic to B+
01/μ;

(ii) is a union of monoids, but not a semilattice of monoids;
(iii) is presented by 〈a, c | ac+ = a, c+a = c, a2 = a, c+ = c〉;
(iv) belongs to UMSL and so satisfies y+xy = x+yx.

Proof (i) Using (iii) of the previous proposition, identify e1μ with e, aμ with f , and
e0μ with 1.

(ii) Because the projection e is not central (ef = e, but f e = f ), L1
2 is not a

semilattice of monoids. It is the union of the semilattice monoid M1 = {1, f } and the
trivial monoid Me.

(iii) With a = f and c = e, the relations are clearly satisfied. Now let S be the
left restriction semigroup so presented. As in the proof of Proposition 4.13(ii), S is
the union of the cyclic monoids generated by a and c and, applying the additional
relations, S consists at most of the three elements a+, a, and c. Therefore S ∼= L1

2.
(iv) Clearly each submonoid is a semilattice and so commutative. The stated iden-

tity then follows as for B+
01. �

Proposition 4.15 B+
01 is a subdirect product of L1

2 and the infinite cyclic monoid.

Proof According to Proposition 4.13(iv), B+
01 is proper and so, by Lemma 2.3, a

subdirect product of B+
01/μ and B+

01/σ . The conclusion then follows from the quoted
proposition, in combination with Proposition 4.14(i). �

Proposition 4.16 Any left restriction semigroup that is a union of monoids, but not
a semilattice of monoids, contains as a left restriction subsemigroup a P -separating
quotient of B+

01.

Proof Suppose S is a union of monoids that is not a semilattice of monoids. Then by
Theorem 4.4, PS is not central, so there exist e ∈ PS and s ∈ S such that a = se �=
es = c. By Theorem 4.8, a = aa+ and s = ss+. Now ac+ = (se)(es)+ = ses+ =
se = a; and c+a = (es)+(se) = es+se = ese = eses+ = (es)(es)+ = es = c. The
left restriction subsemigroup generated by a and c is therefore a quotient of B+

01,
by Proposition 4.13. Note that a+ �= c+ (otherwise a = c+a = c), so the quotient is
P -separating. �
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4.5 Minimal Varieties of Left Restriction Semigroups That do not Consist of
Unions of Monoids

Denote by D the variety generated by the semigroup D.

Theorem 4.17 Any variety of left restriction semigroups that does not consist solely
of unions of monoids contains D. Thus D is the smallest variety of left restriction
semigroups with this property.

Proof According to Theorem 4.8, a left restriction semigroup that is not a union of
monoids contains a left restriction subsemigroup generated by an element a such that
aa+ �= a. Thus any variety V that is not contained in UM contains a semigroup S of
this form. Further, there is a homomorphism FLRx −→ S, mapping x to a.

The set I2 = {(xn)+xk : n ≥ 2,0 ≤ k ≤ n} is clearly a +-ideal of FLRx ;
FLRx\I2 = {x+, x}. The image K2 of I2 in S is again a +-ideal. If K2 were to con-
tain a, then it would contain a+, and vice versa; but in that case a+ = (an)+, for some
n ≥ 2, yielding the contradiction a+ = (a2)+. So S\K2 = {a+, a} and S/K2 ∼= D. �

Proposition 4.18 D covers SL.

Proof Since D contains the two-element subsemilattice {0, a+}, D contains SL. Now
if SL ⊆ V ⊂ D, then by Theorem 4.17, V consists of unions of monoids and therefore
satisfies x = xx+. By Lemma 4.12, D satisfies the identity xx+ = (x2)+. Thus V
satisfies x = (x2)+ and so consists of semilattices. �

4.6 Minimal Varieties of Left Restriction Semigroups That Do Not Consist of
Semilattices of Monoids

Denote by L1
2 the variety generated by L1

2.

Theorem 4.19 Any variety of unions of monoids that does not consist solely of semi-
lattices of monoids contains L1

2. Thus L1
2 is the smallest subvariety of UM with this

property.

Proof According to Proposition 4.16, any such variety contains a P -separating quo-
tient of B+

01, and so contains L1
2
∼= B+

01/μ. �

Theorem 4.20

(1) Any variety of left restriction semigroups that does not consist of semilattices of
monoids contains either D or L1

2.
(2) The varieties D and L1

2 are the two varieties minimal with respect to not being
contained in SM.

Proof Clearly, since L1
2 consists of unions of monoids, it does not contain D; the

converse also holds for, by Proposition 4.18, the only unions of monoids in D are
semilattices. �
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Proposition 4.21 L1
2 ∩ M = MSL, the variety of monoids that consists of semilat-

tices. Thus L1
2 covers SL ∨ MSL.

Proof The variety L1
2 satisfies x2 = x and the identity stated in Proposition 4.14(iv),

so L1
2 ∩ M ⊆ SL. Conversely, the variety of semilattice monoids is generated by the

two-element semilattice monoid, which is a submonoid of L1
2. So equality holds.

Now PL1
2

is a two-element semilattice (regarded in this case as a left restriction

semigroup), so SL ⊂ L1
2 and thus SL ∨ MSL ⊂ L1

2. If SL ∨ MSL ⊆ V ⊂ L1
2, then

since L1
2 ⊂ UM but D is not a union of monoids, D �∈ V so, by the theorem, V ⊆ SM.

In that event, V ∩ M = MSL, so by Theorem 4.5, V = SL ∨ MSL and L1
2 covers

SL ∨ MSL. �

Corollary 4.22 D ∩ L1
2 = SL.

Proof This is clear from Propositions 4.18 and 4.21. �

Note that, by Proposition 4.15, V(B+
01) = L1

2 ∨ MC.

Appendix

The material in this paper is self-contained, in that only the defining identities are
needed. Gould [11] was the first to make explicit the identification of the varietal
definitions of [left] restriction semigroups with the ‘traditional’ definitions of weakly
[left] E-ample semigroups, and it was her paper that motivated the author to investi-
gate the lattices of varieties. The later paper by Hollings [13] surveyed ‘the historical
development of the study of left restriction semigroups, from the ‘weakly left E-
ample’ perspective’, taking as the definition of left restriction semigroups, however,
the semigroups of partial mappings of a given set that are closed under taking the
identity maps on their domains.

Together, those two papers demonstrate the equivalence of these three approaches
to the topic. They also provide a broad overview of the development of the various
historical strands of development of the topic, including some not touched upon here,
to which we refer the reader.

Here we briefly summarize these equivalences, so as to place our paper in context.
Naturally, the reader is referred to [11] and [13] for a fuller exposition.

Let S be a semigroup and let E be a nonempty ‘distinguished’ subsemilattice of
ES . Define the relation R̃E on S by a R̃E b if, for all e ∈ E, ea = a if and only if
eb = b. Each R̃E-class of S contains at most one member of E. Call S weakly left
E-ample if

(1) every element a of S is R̃E-related to a (necessarily unique) member of E, which
may be denoted a+;

(2) R̃E is a left congruence;
(3) for all a ∈ S, e ∈ E, ae = (ae)+a.
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Treating S now as a unary semigroup (S, ·,+ ), and referring to the defining iden-
tities for left restriction semigroups in Sect. 2, notice that E = {x ∈ S : x+ = x},
so (x+)+ = x+ holds, the identities x+x = x and x+y+ = y+x+ are obvious, the
identity (xy)+ = (xy+)+ (see Lemma 2.1) follows from (2), and the left ample iden-
tity xy+ = (xy)+x is an immediate consequence. Also as a result of that additional
identity, (x+y)+ = (x+y+)+ = x+y+.

Therefore every weakly left E-ample semigroup, regarded as a unary semigroup,
satisfies the identities that we have used to define left restriction semigroups, and E

is its set of projections. Conversely, given any left restriction semigroup (S, ·,+ ) and
putting E = PS , then a R̃E b if and only if a+ = b+, that is, a R b in our notation,
from which it readily follows that S is weakly left E-ample.

When regarded from the varietal point of view, the semilattice of ‘distinguished
idempotents’ is now no longer ‘distinguished’: it is simply the semilattice of pro-
jections, subsidiary to the unary operation. Thus the subscript notation on the gen-
eralized Green’s relations plays only the historical role of distinguishing these semi-
groups from the earlier classes considered in the next paragraph. That is why we have
chosen to start afresh with the notation R, etc. A further reason is that these relations
do behave in many ways like the ‘usual’ Green’s relations, as will be more clearly
seen in the sequel [17], where ‘partial egg-boxes’ will play a central role.

The term weakly left ample is reserved for the special case that E = ES . The term
left ample refers to the case that R̃E =R∗, the ‘potential’ Green’s relation given by
a R∗ b if xa = ya if and only if xb = yb for all x, y ∈ S1. (Necessarily, E = ES

[11].) The inverse semigroups, and their full subsemigroups, provide a ready source
of left ample semigroups. (See also Result 5.1 below.)

From the universal algebraic point of view, the great advantage of working with
left restriction semigroups is that they form a variety. The weakly left ample and
the left ample semigroups form only quasi-varieties. At least in the author’s view,
they also exhibit the most natural generality, in that the reduced left restriction semi-
groups comprise all monoids, whereas in the case of weakly left ample and left ample
semigroups, they yield instead the unipotent and the right cancellative monoids, re-
spectively, (see, for example, [10, Proposition 2.5]).

The explicit correspondence between weakly left E-ample semigroups and semi-
groups of partial mappings, which goes back in its essence to Trokhimenko [23], may
also be found in [11, 13]. Denote by P T X the semigroup of partial mappings of a
nonempty set X, under composition, and for α ∈ P T X , let α+ be the identity map
on the domain of α. Within P T X lies the inverse semigroup IX of partial one-one
mappings of X, under the natural inverse.

Result 5.1 The unary semigroup (P T sX,◦,+ ) is a weakly left E-ample semigroup,
the semilattice of projections consisting of the identity mappings on subsets of X.
Conversely, any weakly left E-ample semigroup is (unarily) isomorphic to a unary
subsemigroup of such a semigroup. The representation is by one-one mappings if and
only if the semigroup is left ample.

The two-sided connections are established similarly. However, there is apparently
no two-sided analogue of this last result.
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