
Sheikh I. Ahamed, Mohammad Zulkernine, and Suresh Anamanamuri, “A Dependable Device Discovery Approach for Pervasive Computing
Middleware,” Proceedings of the International Conference on Availability, Reliability and Security (AReS), IEEE CS Press, Vienna, Austria,
April 2006, pp. 66-73.

A Dependable Device Discovery Approach for Pervasive Computing
Middleware

Sheikh I Ahamed1, Mohammad Zulkernine2, and Suresh Anamanamuri3

1, 3Dept. of Math., Stat. & CS, Marquette University, Milwaukee, WI 53201-1881, USA
2School of Computing, Queen’s University, Kingston, Ontario, Canada K7L 3N6

 {iq@mscs.mu.edu, mzulker@cs.queensu.ca, and sanamana@mscs.mu.edu}

Abstract
Distributed applications and middleware services

targeted for mobile devices must use device discovery
service to provide any kind of service to other devices.
Device discovery algorithms developed for wired
networks are not suitable for mobile ad-hoc networks
of pervasive computing environments. This research
proposes a dependable device discovery mechanism for
the middleware of the applications consisting of
rapidly reconfiguring mobile devices. Our approach
offers a comprehensive solution to potential problems
that can arise in highly adaptive mobile ad-hoc
networks of pervasive computing environments. The
approach is robust enough to accommodate the device
limitations and rapid changes in the resource strengths
of each device in the network. We present three new
device discovery algorithms in this paper: a window
based broadcasting algorithm, a connectivity based
dynamic algorithm, and a policy-based scalable
algorithm. The algorithms vary in complexity and
efficiency depending upon the pervasive computing
applications. We identify the desirable dependability
related characteristics of device discovery services and
present how our algorithms realize those
characteristics. Experimental results are presented to
compare and contrast the algorithms.

Keywords: Device discovery, Middleware services,
Pervasive computing, Dependability, and Availability.

1. Introduction

With the increase of hand-held devices for pervasive

computing environments, the use of short-range ad hoc
networks has become widely prevalent. The wireless
ad-hoc networks are established and maintained by the
self organizing behavior of the participating devices
without any central administration or fixed
infrastructure [1]. Bluetooth, IrDA, and 802.11(b) are
some of the wireless communication technologies that
are being used to establish a short-range ad-hoc
network of devices that are autonomous,
heterogeneous, and resource-constrained. Mobile
devices in an ad-hoc network are battery-powered and

they have smaller physical storage and limited
processing capabilities.

Device Discovery (DD) is a service using which a
device can detect all its neighbors and make its
presence known to each neighbor in the network. DD is
the core service in any middleware designed for
pervasive computing since every application targeted
for pervasive computing requires the knowledge of the
devices present in the network. Device discovery
enables the distributed applications to manage the
communication between devices based on their
availability in the network. Since pervasive computing
applications rely heavily on the DD, it should be
reliable, fault-tolerant, adaptive, and optimized for
resource consumption. Reliability and fault tolerance
for DD imply that a device that joins the ad-hoc
network should be able to obtain the list of devices
present in the network under all circumstances. DD
should adapt itself to the changes in the ad-hoc network
because of devices failing, leaving, or joining at any
time. All of the above tasks need to be attained with
optimum use of resources like power and memory.

Research on middleware for ad-hoc networking
have concentrated on services such as routing and
mobility, while the focus on device discovery research
has been intensified only recently. The presence of
different communication technologies posed
difficulties in establishing a standard DD mechanism.
Network initialization and DD in ad-hoc networks in
which devices do not have MAC or unique address
have been addressed in [1]. DD in Bluetooth where
each device simultaneously listens on multiple
frequencies has been dealt with in [6, 7, 8]. However,
all the previous related research have been carried out
at the MAC layer, which are not useful as a
middleware service. While the DD issue has been
handled by most of the work during the initialization of
the network, not much have been discussed about the
adaptability of the service to constant changes in ad-
hoc networks. The issue of adaptability of devices and
DD was addressed partially in [10]. It is well accepted
that DD should be resource-optimized, but earlier
research have not focused on this crucial aspect of DD.
To the best of our knowledge, there is no work on
implementing a middleware service that provides

adaptive, reliable, fault-tolerant, and resource-
optimized DD.

Our objective is to develop dependable DD as a
middleware service that would be used by other
services and higher-layer applications. We present
three algorithms in this paper to design DD service: a
window based broadcasting algorithm, a connectivity
based dynamic algorithm, and a policy-based scalable
algorithm. The algorithms are dependable, i.e., reliable,
fault-tolerant, resource optimized, and adaptable to
network changes due to the failure or removal of a
device of the network. While supporting these
traditional requirements, we also ensure that due
importance is given to the issues such as reduced
network traffic and battery consumption.

The device discovery service module that we
designed will be incorporated as a core service in our
custom middleware MARKS [18] for mobile ad-hoc
networks as shown in Figure 1. Applications and
middleware services use the device discovery module
that contains three different algorithms, to obtain
device lists using our provided API without any extra
overhead. Figure 2 shows the components of our
device discovery service module along with the three
device discovery algorithms. Each algorithm differs
from the other in aspects such as resource-optimization
and the time taken for device discovery. It might be
critical for applications designed for ephemeral
wireless network with very short time for
collaboration, to discover devices quickly and with
reasonable resource-optimization. While applications
designed for networks that exist for long times, would
require comprehensive resource optimization. Some
networks might be stable, and applications in that
network would like to use an algorithm that does a
better resource optimization in a scenario where no
device is joining or leaving the network for a long
period of time. Since application layer has better
knowledge about its requirements, it would use the
algorithm that best satisfies its objectives.

Section 2 discusses some important issues to be
considered while designing a DD service. Section 3
describes the related work. In Section 4, we describe
three novel DD algorithms to be used in a middleware
service. Section 5 provides experimental evaluation of
our approach through analysis of real-time data. In
Section 6, we conclude our presentation with a few
words on future work.

2. Characteristics of Dependable DD
Service

 An ad-hoc network with mobile devices in

Pervasive computing should have a robust device

discovery service with the following characteristics
C1-C5.

Figure 1. Middleware hierarchy for pervasive

computing [18]

C1. Adaptability: The devices should self-configure
themselves since devices are autonomous and will join
and leave network at their wish. Devices leaving the

Figure 2. Device discovery service module

network must realize that their list of discovered
devices is redundant and other devices in the network
should update their lists by removing the devices that
left the network. The frequency with which individual
devices update their lists determines the accuracy of
the DD service.
C2. Reliability: The DD service needs to be reliable,
which means it should continue to work and maintain
accuracy even when devices in the network fail or
leave the network. The handling of this issue requires
decisions on the scenarios in which DD will cause all
the devices to re-initialize the entire network or only a
few devices affected.
C3. Fault-Tolerance: Devices that fail sometimes give
rise to critical errors in the expected functioning of a

Operating system

Core Services

Communication Service Device Discovery Service

Directory
Service Security Service Self-healing

Service
Location Aware

Service

Application 1 Application 2 Application 3

DD service. The DD service needs to have efficient
mechanism for replication of information and
transparent hand-off responsibilities among devices
when faults occur in the network.
C4. Bandwidth-Optimization: It is vital to maintain
low traffic in the network for efficient device
discovery. Devices need to create, send, receive, and
process the packets in the network. This implies more
packets require more computation and power
consumption. Hence, DD algorithms should have
efficient methods to achieve all the above
characteristics with less bandwidth.
C5. Power-Optimization: All the features mentioned
above must be attained with least possible power
consumption. Battery is the most critical resource on
mobile devices and greater network traffic implies
greater processing done by both the senders and the
receivers. Battery power can also be reduced by
investigating means to maintain accurate discovered
device lists, when devices participate intermittently.

3. Related Work

There are a number of protocols and design
architectures that provide the DD in mobile ad-hoc
networks [1, 5, 6, 7, 10]. These protocols are designed
to work with diverse communication technologies such
as Jini, Bluetooth, and 802.11. However, all the
existing protocols aim at discovering devices at the
MAC and network layer without providing application
interface for middleware services to access the list of
discovered devices. Hence, those are not useful for
pervasive computing application developers.

Discussion about power and bandwidth-optimized
(C4 & C5) DD in networks with devices that may not
even have unique ID is presented in [1]. This work also
focuses on collision avoidance and recovery using
randomized distributed algorithms. The process of
electing a leader that performs the device discovery by
detecting new devices joining the ad-hoc network is
also explained in detail. However, [1] does not satisfy
adaptability (C1) since the protocol does not update the
discovered devices when existing devices leave the
network. As a result, list of discovered devices will be
inaccurate in mobile ad-hoc networks where devices
join and leave network at will. Also the protocol
suggested in that paper, does not focus on fault-
tolerance (C3) when the leader fails. This presents a
single point failure of the proposed device discovery
protocol. Hence, the approach presented in the paper is
not suitable for dynamically self-configuring mobile
ad- hoc networks since it does not achieve important
characteristics C1 and C3. Our algorithms handle all
the above mentioned issues in an efficient way.

SLP, UPnP [15], Jini [16], and OSGi [17] are
different technologies that perform resource discovery
in ad-hoc networks, with emphasis on accuracy of
discovered resources. However, the technologies
perform poorly with respect to C4 and C5 in network.
Although, each one of these technologies agree that
efficient management of the resources of the portable
devices is crucial, resource optimization is not given
due importance. Our approach ensures that the devices
in the network adapt to the changes taking place with
optimum use of their resources.

The DD in networks that use Bluetooth as
communication technology has been discussed in [6, 7,
8]. The challenges in Bluetooth multiply because the
frequency hopping system by which the devices listen
on different frequencies and being physically close to
each other will not result in discovery of two devices.
[6] achieves device discovery using inquiry and paging
mechanism and [8] enhances the inquiry mechanism.
[7] discusses about device discovery in multi-hop ad-
hoc networks. Bluetooth specification inherently
supports a master and slave concept that result in a
leader serving the network. The protocols discussed
above do not implement characteristics such as fault-
tolerance (C3), bandwidth-optimization (C4), and
power-optimization (C5). [10] addresses the issue of
adaptability (C1) of devices in DD service. However,
this work does not implement required DD
characteristics C3, C4, and C5.

4. Device Discovery Algorithms

We have used the mobile ad hoc network (MANET)

mode of 802.11(b) protocol in our ad-hoc wireless
network. Each device has a unique name by which it is
identified in the network. We have used the IP Address
of the device to identify it in the network. The
discovered devices are stored in a list called
DeviceList.

4.1. Algorithm 1: Window based broadcasting

approach

In this algorithm, a simple and basic device
discovery method is implemented where each mobile
device in the network would broadcast a beacon to all
the devices in the network at regular intervals of time.
In this algorithm, the devices in the network
continuously broadcast data within the window of four
seconds. Any window size could be used but four
seconds is a reasonable assumption since it takes one
second for a device to respond. Note that Node,
Personal Digital Assistant (PDA) and Device are used

interchangeably in this paper. The different steps in the
execution of Algorithm 1 are as follows:
Step1: A device joining a network broadcasts its
information every two seconds. Other devices in the
network hear about this device and add that device to
their DeviceList.
Step2: Other devices already in the network also
broadcast their information after every two seconds.
The new dev ice listens to these broadcasts and updates
its DeviceList with the devices from which it received
signals.
Step3: When a device leaves a network, other devices
in the network will not pick up the signals it
broadcasts.
Step4: Each device updates its list by reading
DeviceList at regular intervals and a device that did not
send a signal for more than four seconds would be
removed from the list.
Step5: Since the devices in the network continuously
broadcast data within the window of four seconds, the
previous step removes only the devices that left the
network.

4.2. Characteristics of Algorithm 1

This algorithm achieves characteristics C1, C2,
and C3 of DD service. When a few devices fail or
leave the network, the beacons they send will not be
received by the other devices in this network.
Therefore, all the other devices in this network will
remove those devices from their DeviceList after two
consecutive intervals. This results in the algorithm
being adaptive (C1) since it transparently reconfigures
the DeviceList on each device, whenever topology
changes. Algorithm 1 is reliable (C2) since every
device maintains an accurate list of devices in the
network at all times. Each device is independent and is
responsible for maintaining its own DeviceList because
of which the algorithm is fault-tolerant (C3) and
continues to function accurately even when any device
fails in the network.

4.3. Algorithm 2: Connectivity based dynamic

approach

In Algorithm 1, all the devices will require to send
beacon packets at regular intervals of time. This would
increase the power usage because of processing done to
create, send, and receive these packets. Algorithm 2 is
an improvement over Algorithm 1 by eliminating the
repeated broadcast of beacon packets. In Algorithm 2,
the devices joining the network will send beacons only
in the beginning. The only communication that can
take place from hereon is when a device is leaving the

network. To implement this mechanism, a device uses
MAC layer to compute its signal strength with respect
to the entire wireless network. If the signal strength
decreases beyond a critical value the device would
understand that it is going beyond the acceptable
proximity range for the network and would send a
“LeavingNetwork” beacon to all the devices in the
network. As always the beacon would consist of IP
Address. When the remaining devices receive this
beacon, they remove the entry containing that IP
Address from their respective DeviceList. Hence, the
algorithm is called connectivity based dynamic
algorithm.

Every device broadcasts a beacon containing IP
Address and hostname during network initialization or
the first time when it enters the network. After the
initial broadcast the device will keep listening to the
incoming data and will store the IP Address and
hostnames of devices that sent “JoiningNetwork”
beacons. The device understands the difference
between two different signals through a particular bit
called message type. If the device is joining network it
is added to the DeviceList. Every device in the network
thus detects the new device. Next step lies in informing
the new device about the devices present in the
network. Hence, each device in the network would now
send a beacon containing their IP Address and
hostname to the new device. However, if the
“JoiningNetwork” bit is not set, it implies that the new
device should not reply to these beacons. The new
device would then read the messages it received and
would update its DeviceList with the devices which
sent the messages. If a device is leaving the network, it
sends a “LeavingNetwork” beacon based on signal
strength for sudden leaving that results in the device’s
IP Address being removed from the rest of the device’s
DeviceList lists.

The different steps in the execution of Algorithm 2
are as follows:
Step1: A device joining the network broadcasts its
information.
Step2: Other devices present in the network store the
new device in their list of discovered devices and send
their information to the new device.
Step3: Each device monitors its signal strength with
respect to the network. If the signal strength is less than
a critical value, it means that the device is leaving the
network.
Step4: Before leaving the network, a device will
broadcast to the network that it is leaving the network.
Step5: Other devices in the network will update their
list of devices by removing this device from their
DeviceLists.

4.4. Characteristics of Algorithm 2

Algorithm 2 is a great improvement in terms of
network traffic and battery power consumption in
comparison with Algorithm 1. The network traffic
grows linearly with the number of devices in the
network. When there are ‘m’ devices in the network
and ‘n’ devices joining the network, there will be ‘m+n'
number of signals sent and when ‘n’ devices leave the
network there will only be ‘n’ signals. There will be no
network traffic related to DD when the network is in
equilibrium (i.e., no new devices are joining the
network and no existing device is leaving it) and it is
here that this algorithm scores high when compared to
the previous algorithm.

This algorithm is adaptive (C1) so that when
devices leave or fail, the DeviceList of other devices
are updated accurately. This device discovery service is
highly reliable (C2) since every device will have its
own DeviceList and will not depend on other devices.
Accuracy of this approach depends on the signal
strength calculation. This algorithm also supports fault-
tolerance (C3) since there is no single point failure and
the service will continue to function even when a few
devices fail or leave the network. Bandwidth-
optimization (C4) is achieved by decreasing the
network traffic in the network. There is burst traffic
only when new devices enter the network and even in
that case, this algorithm has less network traffic. The
amount of processing that the devices need to do is also
highly reduced since the number of packets created,
sent, and received is less, resulting in reduced power
consumption.

Listening for packets continuously involve scanning
the network for signals every second. Power
consumption as a whole in the network could be saved

if devices are able to sleep and stop listening, yet not
losing the accuracy described in the previous
paragraph. In Algorithm 1 and Algorithm 2, the
devices are required to listen continuously even when
the network is in equilibrium. In Algorithm 1, if a
device sleeps, it will not be able to send or receive the
beacons sent by other devices and as a result may risk
being undiscovered by other devices in the network.
With Algorithm 2, devices can sleep when the network
is in equilibrium, but there is no way that the devices
can know when a network is in equilibrium. Hence, if a
device sleeps even for a small time, it will miss the
signals sent by devices joining and leaving the network
and this will render the DeviceList inaccurate. Thus,
Algorithm 1 and 2 prevent devices from sleeping.

4.5. Algorithm 3: Policy-based scalable

approach

In this algorithm, each device will have certain
role to play in the network. A device can either be a
Device List Maintainer (DLM), a DLM Substitute
(DLMSub), or an ordinary device. DLM is a central
device with the highest resource availability that is
elected initially through a process called as DLM
resolution. DLM keeps track of the list of devices in
the network. After a DLM is elected, it broadcasts a
signal informing the other devices in the network, that
it is the DLM and thus causing the other devices to
break out of their DLM resolution process and assume
the role of the ordinary devices. DLM uses the
information received from different devices in the
network to elect DLMSub, which is a device with the
highest resource availability from the remaining
devices. The role of DLMSub is to check the state of
DLM and make sure that DLM is functional. If DLM

O btain IP A ddress, H ostnam e &

resource streng th of the D evice and
decide critical signal streng th and

resource streng th

R em ove IP
A ddress from

the D eviceL ist

Is m essage type
“L eaving N etw ork”?

D oes
IP A ddress

R eceived exist in
D eviceL ist?

?

B roadcast IP
A ddress &

H ostnam e w ith
m essage “Jo in ing

N etw ork”

U pdate
H ostnam e of

th is IP A ddress

D eviceL ist

D L M

Y es

N o

Y es

N ew D evice

Is m essage type
“Jo ining N etw ork”?

A dd IP A ddress &
H ostnam e received
to the D eviceL ist

Is hostnam e
received differen t

from the H ostnam e
received?

Y es

Y es

B roadcast IP
A ddress &

H ostnam e w ith
m essage “L eaving

N etw ork”

Is
signal strength

less than critical
 value?

C alcu late signal streng th &
resource strength of the device

Y es N o
Is m essage type

D eviceL ist request?

Send
D eviceL ist
to N ode 1

Y es

N o

N o

Figure 3. Joining of a new device in algorithm 3

crashes then DLMSub will have to take up the task of
maintaining the DeviceLists. After DLM and DLMSub
are elected all the other devices in the network are
termed as ordinary devices. The ordinary devices in the
network will store the IP Address of the DLM and
request DeviceList from DLM when required. The
only responsibility of these devices is to respond to the
messages from DLM and DLMSub and facilitate the
DLM resolution process. They monitor their signal
strength continuously and would inform the DLM
when they are leaving the network. These devices will
query the DLM for the device list when required. If the
query of a device is not served after more than two
requests, then it will assume that it needs to participate
in DLM resolution and broadcast its information to all
the devices in the network.

Figure 3 shows communication between a new
device in the network and the DLM in Algorithm 3. A
device that enters a new network starts in DLM
resolution mode. If a DLM is present in the network, it
would send a signal to the new device, informing that it
is DLM, and terminating the DLM resolution mode of
the new device. The new device stores DLM and
would request the DeviceList from DLM when
required. There should be a policy that defines the
frequency with which each device requests the device
lists from DLM. When a device is about to leave the
network it would inform the DLM about it. DLM
updates the list by removing the device from the list of
discovered devices. Also, when there are large numbers
of devices in the network, it is feasible to create more
than one DLM to reduce the burden on a single device.
Hence, it is scalable.

The different steps in the execution of Algorithm
3 are as follows:

Step1: Every device broadcasts its IP address,
hostname, and resource availability to elect a DLM.
Step2: Devices with the highest and the second highest
resource availability are elected as DLM and DLMSub
respectively. Rest of the devices (ordinary devices)
request DeviceList from DLM as required.
Step3: A new device starts in DLM resolution mode. If
a DLM is already elected, it terminates the DLM
resolution process of the new device. The new device
then requests DeviceList from the DLM.
Step4: When a device is about to leave the network
(using signal strength) it would inform the DLM about
it. DLM updates the list by removing the device from
the list of discovered devices.

4.6. Characteristics of Algorithm 3

In Algorithm 2, each device maintains its own copy

of DeviceList. Although this eliminates a single point
of failure, memory used through out the network for

DD can be reduced if a single device can maintain the
list of devices and serve the requests for DeviceList
from other devices in the network. This is precisely
what the third algorithm achieves, while preserving the
advantages of the first and the second algorithms.
There is a single copy of DeviceList in the network at
any point of time and all the other devices request the
DLM for the DeviceList. A single DeviceList for the
entire network will also result in conformity and
accuracy since all the devices will have the same copy
of DeviceList at a given instant of time.

Also, the previous algorithms required the devices to
be active to have accurate DeviceLists. Here the
devices can sleep for small amounts of time and yet
have accurate DeviceLists from DLM. The device after
waking up will poll the DLM to make sure that the
DLM did not change. If DLM changes when the device
was asleep, the device will not get any reply from the
remote device. The device would then broadcast a
query to which the DLM of the network will respond.

 However, having a single leader brings many
complexities inherent to the mobile ad-hoc networks
mentioned earlier. We need to ensure that the device
discovery process does not degrade when the DLM
leaves the network or simply fails at any point of time.
When DLM leaves the network the algorithm ensures
that the devices in the network adapt (C1) themselves
using the “LeavingNetwork” beacon sent by DLM or
DLMSub. However, ordinary devices will be unaware
if DLM or DLMSub fail unexpectedly. Unexpected
failure of DLM is termed as fault and faults are likely
to happen in mobile ad-hoc network. Transparent fault-
recovery (C1) mechanism is implemented by the
algorithm, by having the DLMSub recognize and
handle the failure of DLM when the latter does not
answer a probe beacon. In a similar way, DLM would
recognize DLMSub failure when it does not receive
probe requests for a certain time. Algorithm 3 is also
optimized for performance using less network traffic
and battery-power.

Since each device will have to query the DLM to
obtain the latest DeviceList, this algorithm requires
extra time to serve the higher-level applications. This
algorithm performs very well in comparison to the
other two algorithms when the ad-hoc network is being
formed for a long time rather than for only a few
minutes. This algorithm requires a lot of processing
before DLM resolution stage but very little after a
DLM is elected. The time and processing invested in
electing a DLM is significant for mobile ad-hoc
networks, and this investment would be justified only
when the network is operational for longer spans of
time. There should be a policy that defines the
frequency with which each device requests the device
lists from DLM. Also, when there are huge numbers of

devices in the network, it is feasible to create more than
one DLM to reduce the burden on a single device.

5. Experimental Evaluation

We have implemented the algorithms described

above on Dell Axim 50v PocketPCs using C# as
programming language on .Net Compact Framework
platform. We have calculated signal strength using the
modules developed by OpenNetCF.org. We have used
802.11(b) protocol for communication between devices
since it has a larger area of coverage. We have
experimented with the limited devices at our disposal
and collected real time data for each of the three
algorithms. In this section, we analyze the data
collected and will try to deduce some interesting
conjectures.

We have measured the amount of traffic caused by
each algorithm in a wireless network consisting of 3
PDAs. The three PDAs are present in the network from
the beginning and never leave the network. Every
device discovery algorithm detected the three devices
in the network. Figure 4 shows comparisons of
performance of the three algorithms with respect to the
cumulative number of bytes that passed between
devices during device discovery at different points in
time. Time is calculated in seconds and data in KBs.
There is significant traffic in the network when
Algorithm 1 is used for device discovery since
individual devices continue to send data packets at
regular intervals. With Algorithm 2, there are no
additional data packets being sent into the network
after initial broadcast. Hence, the total number of bytes
remained same. With Algorithm 3, the number of bytes
used for device discovery stabilizes once DLM and
DLMSub are elected. DLM and DLMSub election
requires back and forth communication between
devices and hence higher number of bytes in the
network. However, in a completely dynamic ad-hoc
network, where lot of devices join and leave network
continuously, Algorithm 3 performs better than
Algorithm 1 and Algorithm 2.

Power consumption of devices is another
parameter which we measured for our algorithms. The
comparison of cumulative power consumption in the
network calculated at intervals of four minutes for the
three algorithms is shown in Figure 5. The power
consumed is measured in milli watts. As with network
traffic, power consumption in the network is also more
when Algorithm 1 is used since more data packets had
to be processed by each device. The power
consumption of devices in the network is stable when
Algorithm 2 and Algorithm 3 are used since the

network is in equilibrium, and there is not much
processing to do.

Time Vs. Network Traffic

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10 15

Time (Seconds)

N
et

w
or

k
T

ra
ff

ic
(K

B
 s)

Algorithm 3

Algorithm 1

Algorithm 2

Figure 4. Performance w.r.t. cumulative network

traffic
Power Vs. Time

0

1

2

3

4

5

6

4 8 12 16 20 24

Time(Minutes)

Po
w

er
(M

ill
iW

at
ts

)

Algorithm 1

Algorithm 2

Algorithm 3

Figure 5. Performance w.r.t. cumulative power

consumption

Table 1. Criteria for an application to use the algorithms
Algorithms Suitable applications
Algorithm 1:
Window based
broadcasting

• No signal strength support from
MAC layer.

• Runs for extremely short period.
Algorithm 2:
Connectivity
based dynamic

• Participation of each device in
the network all the time.

• Hard real-time applications.
Algorithm 3:
Policy-based
scalable

• Infrequent participation from
devices.

• Runs for long period.

6. Conclusion and Future Work

In this paper, we have discussed the essential
characteristics of device discovery service, which are
very important for pervasive computing environments.
We have presented three algorithms for device

discovery: a window based broadcasting algorithm
(Algorithm 1), a connectivity based dynamic algorithm
(Algorithm 2), and a policy-based scalable algorithm
(Algorithm 3), which reside in the core service of
Figure 1. These DD Algorithms operate at middleware
level compared to other previously developed DD
algorithms [1, 6, 7, 8] that operate at MAC layer. The
DD algorithms are dependable, i.e., the algorithms are
resource optimized, adaptable to network changes such
as a device failing or leaving the network, reliable, and
fault-tolerant.

Each of the algorithms presented in this paper has
some advantages over the others depending on the
requirements of an application. A DD algorithm can be
selected from the core service of Figure 1 by an
application based on a set of criterion mentioned in
Table 1. Window based broadcasting algorithm can be
used when the MAC layer does not support the
computation of signal strength. It can also be used by
applications that run for extremely short period since it
requires extremely low time for network initialization.
The connectivity based dynamic algorithm is useful for
applications that require the participation of each
device in the network all the time. Since the device lists
are stored in every device, the applications that require
prompt response by each device can use this algorithm.
It is useful for hard real-time applications. Policy-based
scalable algorithm is useful for applications that require
the participation of devices, but not at all times. It gives
better power-performance, hence it is useful for
applications which execute for long times. The
proposed protocols will not be suitable for fast moving
devices (like in vehicular ad-hoc networks) without
lower network layer support.

In future, we will simulate our device discovery
service with more number of devices to collect data on
the scalability of the algorithms although our
Algorithm 3 is inherently scalable. We plan to use our
device discovery service to build higher middleware
services such as directory, routing, and location aware
services along with security.

References

[1] P. Popovski, T. Kozlova, L. Gavrilovska, and R. Prasad,

“Device Discovery in Short-Range Wireless Ad Hoc
Networks,” IEEE network, pp.1361-1365, 2002.

[2] O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, and Y.
Yesha, “Service Discovery in Agent-Based Pervasive
Computing Environments,” Mobile Networks and
Applications, vol. 9, no. 6, pp. 679-692, Dec. 2004.

[3] P. Basu and T. Little, “Wireless Ad Hoc discovery of
Parking Meters,”
http://lcawww.epfl.ch/luo/WAMES%202004_files/wames
_Parkinng%20Meters.pdf.

[4] M. Satyanarayanan, "Pervasive Computing: Vision and
Challenges," Personal Comm., vol. 8, no. 4, pp. 10-17,
Aug. 2001.

[5] A. Wils, F. Matthijs, Y. Berbers, T. Holvoet, and K. De
Vlaminck, “Device discovery in residential gateways,”
IEEE Transactions Consumer Electronics, vol. 48, issue 3,
pp. 478–483, Aug. 2002.

[6] G.V. Zaruba and V. Gupta, “Simplified Bluetooth Device
Discovery – Analysis and Simulation,” Proceedings of the
37th Hawaii International Conference on System Sciences,
2004.

[7] F. Ferraguto, G. Mambrini, A. Panconesi, and C. Petrioli,
“A new approach to device discovery and scatternet
formation in Bluetooth networks,” Proceedings of 18th
International Parallel and Distributed Processing
Symposium, pp. 21, April 2004.

[8] G.V. Zaruba and I. Chlamtac, “Accelerating Bluetooth
Inquiry for Personal Area Networks,” Proceedings of
Global Telecommunications Conference, IEEE Volume
2, pp.702 – 706, Dec. 2003.

[9] T. Pering, V. Raghunathan, and R. Want, “Exploiting
radio hierarchies for power-efficient wireless device
discovery and connection setup,” Proceedings of 18th
International Conference on VLSI Design, pp.774–779,
Jan. 2005.

[10] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie,
“Protocols for Self-Organization of a Wireless Sensor
Network,” IEEE Personal Communications, vol. 7, Issue
5, pp. 16 – 27, Oct. 2000.

[11] A. Akkaya and M. Younis, “A survey on Routing
Protocols for Wireless Sensor Networks,” Proceedings of
the IEEE Wireless communications and Networking
Conference (WCNC), Orlando, FL, March 2002.

[12] K. Nakano and S. Olariu, “Random Initialization
Protocols for Ad-hoc networks,” IEEE network, vol. 15,
no. 5, pp. 28-37, 2001.

[13] E. Hall, D. Vawdrey, and C. Knuston, “RF Rendez-
Blue: Reducing Power and Inquiry Costs in Bluetooth-
Enabled Mobile Systems,” Proc.of Eleventh Int. Conf. on
Computer Communications and Networks, pp. 640-645,
Oct. 2002.

[14] I. Chlamtac, C. Petrioli, and J. Redi, “Energy conserving
access protocols for identification networks,” IEEE ACM
Transactions on Networking 7(1), pp. 51-59, 1999.

[15] Universal Plug and Play, “Understanding Universal Plug
and Play: a White Paper," June 2000,
http://upnp.org/resources/whitepapers.asp.

[16] Sun Microsystems, "JINI technology Architectural
Overview," http://www.sun.com/jini

[17] P. Dobrev, D. Famolari, C. Kurzke, and B. Miller,
“Device and Service Discovery in Home Networks with
OSGI,” IEEE Communications Magazine, vol. 40, issue
8, pp. 86 – 92, Aug. 2002.

[18] M. Sharmin, S. Ahmed, and S. I. Ahamed, “MARKS
(Middleware Adaptability for Resource Discovery,
Knowledge Usability and Self-healing) for Mobile Devices
of Pervasive Computing Environments,” To appear in the
Proc. of Third Int. Conf. on Information Technology : New
Generations (ITNG), Las Vegas, USA, April 2006.

