Section 4.6/4.7 - Example

According to a recent estimate (2007), approximately one million people in the U.S. are HIV positive ${ }^{1}$. The population of the U.S. is approximately 308 million.

No test is perfect, as you know - suppose we do know the following: if you are HIV positive, 95% of the time you will get a positive test result; if you are not HIV positive, 99% of the time you will get a negative test result.

Now, suppose I take the HIV test and I test positive. What is the probability that I actually have the disease, given this positive test?
Guess answer? \qquad

Solution:

Let $H=$ the event of being HIV positive,
Let $T=$ the event of getting a positive test.

We're looking for $P(\quad)$.

We know:
$P(H)=$
$P\left(H^{c}\right)=$
$P(\quad)=$
$P(\quad)=$

Why the surprising result?

[^0]
[^0]: ${ }^{1}$ http://www.avert.org/usa-statistics.htm

