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Introduction

The groups of high dimensional knots have been characterized by
Kervaire [7], but there is still no general description of all 2-knot groups.
Kervaire identified a large class of groups that are natural candidates
to serve as 2-knot groups and proved that each of these groups is the
group of the complement of a smooth 2-sphere in a homotopy 4-sphere.
Freedman’s solution to the 4-dimensional Poincaré conjecture implies
that the groups Kervaire identified are the groups of locally flat topo-
logical 2-knots, but it is not known whether all of them are groups of
piecewise linear (PL) 2-knots in S4. The best result is due to Levine
[9], who observed that the Andrews-Curtis conjecture can be used to
show that all the groups identified by Kervaire are groups of PL 2-knots
in S4.

In this note we outline a new proof of Levine’s theorem. The proof
given here is entirely 4-dimensional; the Kirby calculus of links is used
to give an explicit picture of the 2-knot and its complement. By con-
trast, the usual proof of Levine’s theorem involves constructing a 5-
dimensional ball pair whose boundary is the knot. Our proof leads
to a piecewise linear knot with one nonlocally flat point. It is clear
from the construction that the link of the exceptional vertex is a rib-
bon link. The proof in this paper is based on a recent construction of
Lickorish [10].

1. Properties of knot groups

Before we can state the Kervaire theorem we need several definitions.

Definition. An n-knot is a topological embedding h : Sn → Sn+2.

It is usually assumed that the embedding h is either smooth or PL,
although knots in other categories can be profitably studied as well.

Definition. The group of the knot h : Sn → Sn+2 is π1(S
n+2 rh(Sn)).
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Definition. A group π has weight 1 if there exists one element z ∈ π
such that π is generated by conjugates of z and z−1. Such an element
z is called a meridian of the group.

It is relatively easy to see that the group π of any smooth or PL knot
has the following properties:

(1) π is finitely presented.
(2) The abelianized group π/[π, π] is infinite cyclic.
(3) H2(π) = 0.
(4) π has weight 1.

Kervaire [7] proved that these four properties completely characterize
the groups of high dimensional knots.

Theorem 1.1 (Kervaire). A group π is the group of a smooth n-knot,
n ≥ 3, if and only if π satisfies (1) – (4).

Since a 2-knot can be suspended to a 3-knot, every 2-knot group
is a 3-knot group and therefore satisfies (1) – (4). But not every 3-
knot group is a 2-knot group—see [3], for example. Hence stronger
conditions are needed to characterize 2-knot groups. The following
condition is a natural one to try in place of condition (3).

(3′) π has deficiency 1.

Definition. The deficiency of a finite presentation for a group is

(# generators)− (# relations).

The deficiency of a finitely presented group is the maximal deficiency
of its presentations.

Kervaire [7] proved that any group satisfying (1), (3′), and (4) is the
fundamental group of the complement of a smooth 2-sphere in a homo-
topy 4-sphere. Combining that result with Freedman’s solution [5] to
the 4-dimensional topological Poincaré conjecture yields the following
theorem.

Theorem 1.2 (Kervaire-Freedman). If π satisfies (1), (3′), and (4),
then π is the group of a locally flat topological 2-knot in S4.

Remark. It is relatively easy to see [6, page 17] that

(1) + (3′) + (4) ⇒ (2),

so it is not necessary to assume (2) in the Kervaire-Freedman theorem.

The Kervaire-Freedman theorem exhibits a large class of groups that
are 2-knot groups, but it does not characterize 2-knot groups. While
the conditions listed in the theorem are sufficient to guarantee that a
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group is a 2-knot group, they are not necessary. In particular, con-
dition (3′) is not a necessary condition since the group of the 2-knot
described by Fox in [4, Example 12] does not have deficiency 1. In ad-
dition, Freedman’s theorem gives only a topological homeomorphism
between the homotopy 4-sphere and S4, so the theorem does not an-
swer the question of whether or not groups satisfying (1), (3′), and (4)
are the groups of smooth or PL 2-knots. It is the latter aspect of the
theorem that will be investigated in this paper; we will add an addi-
tional condition which allows us to construct a PL 2-knot realizing the
group.

2. Andrews-Curtis moves and the theorem of Levine

Levine [9] observed that a conjecture of Andrews and Curtis [1] can
be used to prove that groups satisfying (1), (3′), and (4) are the groups
of smooth or PL 2-knots.

Definition. Let P = 〈a1, . . . , an | r1, . . . , rm〉 be a presentation of a
group. The following are called Andrews-Curtis moves on P :

• Replace ri by riaja
−1
j or ria

−1
j aj.

• Replace ri by a cyclic permutation of ri.
• Replace ri by r−1

i .
• Add a new generator an+1 and a new relation an+1w

−1, where
w is an arbitrary word in a1, . . . , an.

Definition. Two finite presentations are said to be AC equivalent if it
is possible to get from one to the other by a finite sequence of Andrews-
Curtis moves or their inverses.

Suppose

P = 〈a1, . . . , an | r1, . . . , rn−1〉
is a deficiency 1 presentation of a group π. If π has weight 1 and z is
a meridional element for π, then

P ′ = 〈a1, . . . , an | r1, . . . , rn−1, z〉

is presentation of the trivial group. Note that P ′ has deficiency 0.

Definition. The presentation P ′ is called the induced presentation of
the trivial group. The presentation 〈a | a〉 is called the trivial presen-
tation of the trivial group.

The Andrews-Curtis Conjecture. The Andrews-Curtis conjecture
states that if a finitely presented group has weight 1 and deficiency 1,
then the induced presentation of the trivial group is AC equivalent
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to the trivial presentation.1 This conjecture is deep and has thus far
resisted all attempts at proof. Levine’s theorem [9] asserts that if the
Andrews-Curtis conjecture holds for a particular presentation, then the
group is the group of a PL 2-knot.

Theorem 2.1 (Levine). If π satisfies (1), (3′), and (4) and if π has
a presentation such that the induced presentation of the trivial group
is AC equivalent to the trivial presentation, then π is the group of a
locally flat PL 2-knot.

3. Construction of PL 2-knots

In this section we will outline a proof of Levine’s Theorem. The first
step is to get a presentation of the group that reflects the additional
structure given by the Andrews-Curtis moves.

Definition. Let π be a group of weight 1 with meridional element z.
A meridional presentation of π is a presentation of the form

P = 〈a1, . . . , an, z | r1, . . . , rn〉
in which each ri is a product of conjugates of z and z−1.

More specifically, each ri has the form

ri = wi1z
ε1w−1

i1 wi2z
ε2w−1

i2 . . . wimi
zεmiw−1

imi

in which each εk = ±1 and wij is a word in a1, . . . , an, z.

Lemma 3.1. If π satisfies (1), (3′), and (4) and if π has a presentation
such that the induced presentation of the trivial group is AC equivalent
to the trivial presentation, then π has a meridional presentation.

Sketch of proof. Assume π has a presentation P such that the induced
presentation P ′ of the trivial group is AC equivalent to the trivial
presentation. Do the same Andrews-Curtis moves to P as to P ′, but
without canceling the z’s. The same moves that transform P ′ to the
trivial presentation will transform P to a meridional presentation. �

Here is a statement of the theorem we will prove.

Theorem 3.2. If π satisfies (1), (3′), and (4) and if π has a pre-
sentation such that the induced presentation of the trivial group is AC
equivalent to the trivial presentation, then π is the group of a PL 2-
knot. Furthermore, the PL 2-knot is locally flat except at one point and
the complementary disk is a ribbon disk.

1More generally, the Andrews-Curtis conjecture asserts that any two presenta-
tions of a group that have the same deficiency are AC equivalent.
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We will sketch the proof in a simple case. It will be evident how to
modify the proof to cover the general case.

Proof. By the lemma, we may assume that π has a meridional presen-
tation. Suppose, for example, that π has presentation

P = 〈x, y, z | x = y−1xzx−1y, y = xy−1zyx−1〉.2

In order to simplify the notation we use α to denote the relation
x−1y−1xzx−1y and β to denote the relation y−1xy−1zyx−1.

We begin by constructing the knot complement. Figure 1 shows a
Kirby diagram of a compact 4-manifold X. We are using the standard
Kirby calculus notation: a 1-handle attached to B4 is the same as an
unknotted 2-handle subtracted from B4, so a 1-handle is indicated by
an unknotted circle with a large dot on it. It is clear that π1(X) ∼= π.

x y

z

α β

Figure 1. Kirby diagram of the complement X

Observe that X can be constructed as a subset of S4. To see this,
note that both x ∪ y ∪ z and α ∪ β are unlinks. We think of these two
links as lying on ∂B4 ⊂ S4. Since both links are trivial, we can attach
disjoint disks to x ∪ y ∪ z in B4 and attach disjoint disks to α ∪ β in
S4 r Int B4. Then X is realized in S4 by starting with B4, subtracting
neighborhoods of the inside disks, and adding neighborhoods of the
outside disks.

We now consider M = S4 r X. The proof of the theorem will be
completed by showing that M is a regular neighborhood of a PL 2-
sphere. We will accomplish this by first constructing a Kirby diagram
for M and then canceling handles to show that M has a handle decom-
position consisting of one 0-handle and one 2-handle.

2This is a meridional presentation of the figure-eight knot group.
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Note that M is obtained from the 4-ball S4rInt B4 by adding neigh-
borhoods of the disks attached to x ∪ y ∪ z and subtracting neighbor-
hoods of the disks attached to α ∪ β. This means that the diagram
of M is obtained from the diagram of X by removing the dots from
x, y, z and placing new dots on α, β—see Figure 2.

x y

z

α β

Figure 2. Kirby diagram of M = S4 r X

We now wish to simplify the handle decomposition of M . The decom-
position indicated in Figure 2 consists of one 0-handle, two 1-handles,
and three 2-handles. We will cancel two (1, 2)-handle pairs, leaving
just a 0-handle with a single 2-handle attached. The first step is to
straighten out α and β—see Figure 3.

x y

z

α

β

Figure 3. Make α and β look like the standard unlink

The next step is to slide the 2-handle z over over the 2-handle x and
then to cancel α ∪ x—see Figure 4.
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y

z

β

Figure 4. Slide z over x; then cancel α ∪ x

z

Figure 5. Slide z over y; then cancel β ∪ y

The final step is to slide the 2-handle z over over the other 2-handle
y and then to cancel β ∪ y—see Figure 5.

We now see that M consists of a 0-handle with one 2-handle attached
along z. Thus M is a regular neighborhood of a PL 2-sphere. The 2-
sphere consists of the the core of the 2-handle plus the cone on z, so it
has one nonlocally flat point. It is clear from the construction that the
final 2-handle z is a ribbon knot and that the disk is the the ribbon
disk. �
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