CONSTRUCTING PIECEWISE LINEAR 2-KNOT COMPLEMENTS

JONATHAN DENT, JOHN ENGBERS, AND GERARD VENEMA

Introduction

The groups of high dimensional knots have been characterized by Kervaire [7], but there is still no general description of all 2-knot groups. Kervaire identified a large class of groups that are natural candidates to serve as 2 -knot groups and proved that each of these groups is the group of the complement of a smooth 2 -sphere in a homotopy 4 -sphere. Freedman's solution to the 4 -dimensional Poincaré conjecture implies that the groups Kervaire identified are the groups of locally flat topological 2-knots, but it is not known whether all of them are groups of piecewise linear (PL) 2-knots in S^{4}. The best result is due to Levine [9], who observed that the Andrews-Curtis conjecture can be used to show that all the groups identified by Kervaire are groups of PL 2-knots in S^{4}.

In this note we outline a new proof of Levine's theorem. The proof given here is entirely 4-dimensional; the Kirby calculus of links is used to give an explicit picture of the 2-knot and its complement. By contrast, the usual proof of Levine's theorem involves constructing a 5dimensional ball pair whose boundary is the knot. Our proof leads to a piecewise linear knot with one nonlocally flat point. It is clear from the construction that the link of the exceptional vertex is a ribbon link. The proof in this paper is based on a recent construction of Lickorish [10].

1. Properties of knot groups

Before we can state the Kervaire theorem we need several definitions.
Definition. An n-knot is a topological embedding $h: S^{n} \rightarrow S^{n+2}$.
It is usually assumed that the embedding h is either smooth or PL, although knots in other categories can be profitably studied as well.

Definition. The group of the knot $h: S^{n} \rightarrow S^{n+2}$ is $\pi_{1}\left(S^{n+2} \backslash h\left(S^{n}\right)\right)$.

[^0]Definition. A group π has weight 1 if there exists one element $z \in \pi$ such that π is generated by conjugates of z and z^{-1}. Such an element z is called a meridian of the group.

It is relatively easy to see that the group π of any smooth or PL knot has the following properties:
(1) π is finitely presented.
(2) The abelianized group $\pi /[\pi, \pi]$ is infinite cyclic.
(3) $H_{2}(\pi)=0$.
(4) π has weight 1 .

Kervaire [7] proved that these four properties completely characterize the groups of high dimensional knots.

Theorem 1.1 (Kervaire). A group π is the group of a smooth n-knot, $n \geq 3$, if and only if π satisfies (1) - (4).

Since a 2-knot can be suspended to a 3-knot, every 2-knot group is a 3 -knot group and therefore satisfies (1) - (4). But not every 3 knot group is a 2 -knot group - see [3], for example. Hence stronger conditions are needed to characterize 2 -knot groups. The following condition is a natural one to try in place of condition (3).
$\left(3^{\prime}\right) \pi$ has deficiency 1.
Definition. The deficiency of a finite presentation for a group is
(\# generators) - (\# relations).

The deficiency of a finitely presented group is the maximal deficiency of its presentations.

Kervaire [7] proved that any group satisfying (1), (3'), and (4) is the fundamental group of the complement of a smooth 2 -sphere in a homotopy 4 -sphere. Combining that result with Freedman's solution [5] to the 4-dimensional topological Poincaré conjecture yields the following theorem.

Theorem 1.2 (Kervaire-Freedman). If π satisfies (1), (3'), and (4), then π is the group of a locally flat topological 2-knot in S^{4}.

Remark. It is relatively easy to see [6, page 17] that

$$
(1)+\left(3^{\prime}\right)+(4) \Rightarrow(2),
$$

so it is not necessary to assume (2) in the Kervaire-Freedman theorem.
The Kervaire-Freedman theorem exhibits a large class of groups that are 2-knot groups, but it does not characterize 2-knot groups. While the conditions listed in the theorem are sufficient to guarantee that a
group is a 2-knot group, they are not necessary. In particular, condition (3^{\prime}) is not a necessary condition since the group of the 2-knot described by Fox in [4, Example 12] does not have deficiency 1. In addition, Freedman's theorem gives only a topological homeomorphism between the homotopy 4 -sphere and S^{4}, so the theorem does not answer the question of whether or not groups satisfying (1), (3'), and (4) are the groups of smooth or PL 2-knots. It is the latter aspect of the theorem that will be investigated in this paper; we will add an additional condition which allows us to construct a PL 2-knot realizing the group.

2. Andrews-Curtis moves and the theorem of Levine

Levine [9] observed that a conjecture of Andrews and Curtis [1] can be used to prove that groups satisfying (1), (3'), and (4) are the groups of smooth or PL 2-knots.

Definition. Let $\mathcal{P}=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a presentation of a group. The following are called Andrews-Curtis moves on \mathcal{P} :

- Replace r_{i} by $r_{i} a_{j} a_{j}^{-1}$ or $r_{i} a_{j}^{-1} a_{j}$.
- Replace r_{i} by a cyclic permutation of r_{i}.
- Replace r_{i} by r_{i}^{-1}.
- Add a new generator a_{n+1} and a new relation $a_{n+1} w^{-1}$, where w is an arbitrary word in a_{1}, \ldots, a_{n}.

Definition. Two finite presentations are said to be $A C$ equivalent if it is possible to get from one to the other by a finite sequence of AndrewsCurtis moves or their inverses.

Suppose

$$
\mathcal{P}=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle
$$

is a deficiency 1 presentation of a group π. If π has weight 1 and z is a meridional element for π, then

$$
\mathcal{P}^{\prime}=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n-1}, z\right\rangle
$$

is presentation of the trivial group. Note that \mathcal{P}^{\prime} has deficiency 0 .
Definition. The presentation \mathcal{P}^{\prime} is called the induced presentation of the trivial group. The presentation $\langle a \mid a\rangle$ is called the trivial presentation of the trivial group.

The Andrews-Curtis Conjecture. The Andrews-Curtis conjecture states that if a finitely presented group has weight 1 and deficiency 1 , then the induced presentation of the trivial group is AC equivalent
to the trivial presentation. ${ }^{1}$ This conjecture is deep and has thus far resisted all attempts at proof. Levine's theorem [9] asserts that if the Andrews-Curtis conjecture holds for a particular presentation, then the group is the group of a PL 2-knot.

Theorem 2.1 (Levine). If π satisfies (1), (3'), and (4) and if π has a presentation such that the induced presentation of the trivial group is $A C$ equivalent to the trivial presentation, then π is the group of a locally flat PL 2-knot.

3. Construction of PL 2 -knots

In this section we will outline a proof of Levine's Theorem. The first step is to get a presentation of the group that reflects the additional structure given by the Andrews-Curtis moves.

Definition. Let π be a group of weight 1 with meridional element z. A meridional presentation of π is a presentation of the form

$$
\mathcal{P}=\left\langle a_{1}, \ldots, a_{n}, z \mid r_{1}, \ldots, r_{n}\right\rangle
$$

in which each r_{i} is a product of conjugates of z and z^{-1}.
More specifically, each r_{i} has the form

$$
r_{i}=w_{i 1} z^{\epsilon_{1}} w_{i 1}^{-1} w_{i 2} z^{\epsilon_{2}} w_{i 2}^{-1} \ldots w_{i m_{i}} z^{\epsilon_{m_{i}}} w_{i m_{i}}^{-1}
$$

in which each $\epsilon_{k}= \pm 1$ and $w_{i j}$ is a word in a_{1}, \ldots, a_{n}, z.
Lemma 3.1. If π satisfies (1), (3'), and (4) and if π has a presentation such that the induced presentation of the trivial group is $A C$ equivalent to the trivial presentation, then π has a meridional presentation.

Sketch of proof. Assume π has a presentation \mathcal{P} such that the induced presentation \mathcal{P}^{\prime} of the trivial group is AC equivalent to the trivial presentation. Do the same Andrews-Curtis moves to \mathcal{P} as to \mathcal{P}^{\prime}, but without canceling the z 's. The same moves that transform \mathcal{P}^{\prime} to the trivial presentation will transform \mathcal{P} to a meridional presentation.

Here is a statement of the theorem we will prove.
Theorem 3.2. If π satisfies (1), (3'), and (4) and if π has a presentation such that the induced presentation of the trivial group is $A C$ equivalent to the trivial presentation, then π is the group of a PL 2knot. Furthermore, the PL 2-knot is locally flat except at one point and the complementary disk is a ribbon disk.

[^1]We will sketch the proof in a simple case. It will be evident how to modify the proof to cover the general case.

Proof. By the lemma, we may assume that π has a meridional presentation. Suppose, for example, that π has presentation

$$
\mathcal{P}=\left\langle x, y, z \mid x=y^{-1} x z x^{-1} y, y=x y^{-1} z y x^{-1}\right\rangle .^{2}
$$

In order to simplify the notation we use α to denote the relation $x^{-1} y^{-1} x z x^{-1} y$ and β to denote the relation $y^{-1} x y^{-1} z y x^{-1}$.

We begin by constructing the knot complement. Figure 1 shows a Kirby diagram of a compact 4-manifold X. We are using the standard Kirby calculus notation: a 1-handle attached to B^{4} is the same as an unknotted 2-handle subtracted from B^{4}, so a 1-handle is indicated by an unknotted circle with a large dot on it. It is clear that $\pi_{1}(X) \cong \pi$.

Figure 1. Kirby diagram of the complement X
Observe that X can be constructed as a subset of S^{4}. To see this, note that both $x \cup y \cup z$ and $\alpha \cup \beta$ are unlinks. We think of these two links as lying on $\partial B^{4} \subset S^{4}$. Since both links are trivial, we can attach disjoint disks to $x \cup y \cup z$ in B^{4} and attach disjoint disks to $\alpha \cup \beta$ in $S^{4} \backslash \operatorname{Int} B^{4}$. Then X is realized in S^{4} by starting with B^{4}, subtracting neighborhoods of the inside disks, and adding neighborhoods of the outside disks.

We now consider $M=\overline{S^{4} \backslash X}$. The proof of the theorem will be completed by showing that M is a regular neighborhood of a PL 2sphere. We will accomplish this by first constructing a Kirby diagram for M and then canceling handles to show that M has a handle decomposition consisting of one 0 -handle and one 2-handle.

[^2]Note that M is obtained from the 4 -ball $S^{4} \backslash \operatorname{Int} B^{4}$ by adding neighborhoods of the disks attached to $x \cup y \cup z$ and subtracting neighborhoods of the disks attached to $\alpha \cup \beta$. This means that the diagram of M is obtained from the diagram of X by removing the dots from x, y, z and placing new dots on α, β-see Figure 2.

Figure 2. Kirby diagram of $M=\overline{S^{4} \backslash X}$
We now wish to simplify the handle decomposition of M. The decomposition indicated in Figure 2 consists of one 0-handle, two 1-handles, and three 2-handles. We will cancel two (1,2)-handle pairs, leaving just a 0-handle with a single 2-handle attached. The first step is to straighten out α and β-see Figure 3.

Figure 3. Make α and β look like the standard unlink
The next step is to slide the 2-handle z over over the 2 -handle x and then to cancel $\alpha \cup x$-see Figure 4 .

Figure 4. Slide z over x; then cancel $\alpha \cup x$

Figure 5. Slide z over y; then cancel $\beta \cup y$

The final step is to slide the 2-handle z over over the other 2-handle y and then to cancel $\beta \cup y$-see Figure 5 .

We now see that M consists of a 0 -handle with one 2 -handle attached along z. Thus M is a regular neighborhood of a PL 2-sphere. The 2sphere consists of the the core of the 2-handle plus the cone on z, so it has one nonlocally flat point. It is clear from the construction that the final 2 -handle z is a ribbon knot and that the disk is the the ribbon disk.

References

[1] J. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc., 16 (1965), 192-195.
[2] J. Dent and J. Engbers, 4-manifolds, Kirby calculus, and the construction of knotted 2-spheres in 4-space, to appear.
[3] M. Š. Farber, Duality in an infinite cyclic covering, and even-dimensional knots, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 794-828.
[4] R. H. Fox, A quick trip through knot theory, in "Topology of 3-manifolds and Related Topics" (M. K. Fort, Jr., editor), Prentice Hall, Engelwood Cliffs, New Jersey (1962), 120-167.
[5] M. H. Freedman, The topology of four-dimensional manifolds, Journal Differential Geometry, 17 (1982), 357-453.
[6] J. Hillman, 2-knots and their groups, Australian Mathematical Society Lecture Series, vol. 5, Cambridge University Press, Cambridge, 1989.
[7] M. Kervaire, On higher dimensional knots, in "Differential and Combinatorial Topology" (S. S. Cairns, editor), Princeton University Press, Princeton (1965), 225-271.
[8] R. Kirby, A calculus for framed links in S^{3}, Invent. Math. 45 (1978), 35-56.
[9] J. Levine, Some results on higher dimensional knot groups, Lecture Notes in Mathematics, Springer-Verlag, 685 (1978), 243-269.
[10] W. B. R. Lickorish, Knotted contractible 4-manifolds in S^{4}, Pacific Journal of Mathematics, 208 (2003), 283-290.

Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546 USA

E-mail address: venema@calvin.edu

[^0]: This research was partially supported by an REU supplement to NSF grant number DMS-0206647.

[^1]: ${ }^{1}$ More generally, the Andrews-Curtis conjecture asserts that any two presentations of a group that have the same deficiency are AC equivalent.

[^2]: ${ }^{2}$ This is a meridional presentation of the figure-eight knot group.

