
Reversible peg solitaire on graphs

John Engbers Christopher Stocker

May 4, 2015∗

Abstract

The game of peg solitaire on graphs was introduced by Beeler and Hoilman in 2011.
In this game, pegs are initially placed on all but one vertex of a graph G. If xyz forms
a path in G and there are pegs on vertices x and y but not z, then a jump places a
peg on z and removes the pegs from x and y. A graph is called solvable if, for some
configuration of pegs occupying all but one vertex, some sequence of jumps leaves a
single peg. We study the game of reversible peg solitaire, where there are again initially
pegs on all but one vertex, but now both jumps and unjumps (the reversal of a jump)
are allowed. We show that in this game all non-star graphs that contain a vertex
of degree at least three are solvable, that cycles and paths on n vertices, where n is
divisible by 2 or 3, are solvable, and that all other graphs are not solvable. We also
classify the possible starting hole and ending peg positions for solvable graphs.

1 Introduction

Peg solitaire is a game on geometric boards that has been recently generalized to connected
simple graphs by Beeler and Hoilman [2]. In the game of peg solitaire on graphs, all vertices
but one start occupied by a peg (the vertex without a peg is said to have a hole). If x and y
are adjacent and y and z are adjacent with pegs on x and y and a hole on z, then the legal
move is to jump the peg on x over the peg on y into the hole on z while removing the peg on
y. See Figure 1.

x y z x y z

Figure 1: A jump in peg solitaire.

The purpose of the game is to reduce the total number of pegs on the vertices to one. If
this is achieved from some starting configuration with exactly one hole the graph is said to be
solvable. If it is achievable from every starting configuration with exactly one hole the graph
is said to be freely solvable. Clearly, solvability requires the graph to be connected. Several

∗{john.engbers, christopher.stocker}@marquette.edu; Department of Mathematics, Statistics and Computer
Science, Marquette University, Milwaukee, WI 53201

1

results on which graphs are freely solvable, which are solvable but not freely solvable, and
which are not solvable are given in [2, 3, 9]. As a sample result, in [3] the game is played on
the double star DS(L,R) (with L ≥ R), which is the graph consisting of a fixed edge uv that
has L pendant edges joined to u and R pendant edges joined to v. Beeler and Hoilman show
that DS(L,R) is freely solvable if and only if L = R and R 6= 1, and solvable if and only if
L ≤ R + 1. Fully characterizing the connected graphs G that are freely solvable or solvable
for peg solitaire on graphs seems to be a difficult question. It is also worth mentioning here
that there are many interesting results and techniques related to traditional peg solitaire on
geometric boards, see [1, 5, 6].

Variations of peg solitaire on graphs have recently been introduced. One such variation,
called fool’s solitaire, asks for the maximum number of pegs that can be left on vertices where
no possible jumps remain, see [4, 8]. In this paper, we introduce another variation, which
is mentioned with regards to algebraic techniques used to study traditional peg solitaire in
[5]. We consider the game of reversible peg solitaire, which allows not only jumps but also
the additional move of an unjump, which is the reversal of a jump. Specifically, if x and y
are adjacent and y and z are adjacent with holes on x and y and a peg on z, then a second
legal move is to unjump the peg from z to x, creating a peg on y. We can also view this as
allowing the hole on x to jump over the hole on y, creating a hole on z (but also creating
pegs on x and y). See Figure 2.

x y zx y z

Figure 2: An unjump in reversible peg solitaire.

Notice that reversible peg solitaire may also be viewed as a restricted version of Lights Out
on graphs, a game where a closed neighborhood may flip all states (here pegs/holes). In this
formulation, we are allowed to flip the states of all vertices in a path on three vertices (instead
of an entire closed neighborhood) if the vertices are in one of two starting configurations.
In particular, any path on three vertices whose endpoints contain exactly one peg may be
flipped. For a survey of Lights Out, see [7].

Following the terminology for peg solitaire, we say that a graph is solvable for reversible
peg solitaire if for some starting configuration with exactly one hole, some combination of
jumps and unjumps eventually produces a configuration with a single peg. If a graph is
solvable for every starting configuration with exactly one hole, we say that the graph is freely
solvable. If we may freely choose the location of the final peg in a freely solvable graph, we
say that the graph is doubly freely solvable. Note that any graph that is doubly freely solvable
is freely solvable, and any graph that is freely solvable is solvable.

For reversible peg solitaire, which graphs are solvable? Clearly anything (freely/doubly
freely) solvable in peg solitaire (which uses only jumps) will also be (freely/doubly freely)
solvable in reversible peg solitare, but some graphs that are not solvable in peg solitaire may
now become solvable in reversible peg solitaire. Our first result shows, however, that not all
graphs are solvable in reversible peg solitare.

Theorem 1.1. For any n ≥ 4, the star K1,n−1 is not solvable.

2

Proof. Notice that both jumps and unjumps on the star require there to be a peg on one leaf
and a hole on a second leaf; this shows that to make an initial move the hole must start on a
leaf. Given this, each move will preserve the total number of pegs on the leaves and toggle
the center between having a peg and being a hole. Therefore the only possible configurations
on K1,n−1 have either n − 1 or n − 2 pegs, so for n ≥ 4 there will never be a single peg
remaining.

As the following theorem shows, with unjumps allowed most graphs are freely solvable.

Theorem 1.2. Let G be a connected graph on n vertices. If G 6= K1,n−1 and G has a vertex
of degree at least 3, then G is freely solvable. Furthermore G is doubly freely solvable if and
only if there is a path joining two vertices of degree at least 3 whose length is not divisible by
3.

In the proof of Theorem 1.2, which is given in Section 2, we provide all possible starting
hole and ending peg positions for all freely solvable but not doubly freely solvable graphs
containing a vertex of degree at least 3.

The only connected graphs that are not covered by Theorems 1.1 and 1.2 are paths and
cycles. Let Pn and Cn denote a path and a cycle on n vertices, respectively. We also have
the following, which we prove in Section 2.

Theorem 1.3. Let n ≥ 2 be an integer.

1. If n is not divisible by 2 or 3, then Pn and Cn are not solvable.

2. If n is divisible by 3, then Pn is solvable but not freely solvable, and Cn is freely solvable
but not doubly freely solvable.

3. If n is not divisible by 3 but is divisible by 2, then Pn is solvable but not freely solvable,
and Cn is doubly freely solvable

In the proof of Theorem 1.3, which is given in Section 2, we provide all possible starting
hole and ending peg positions for all solvable paths and cycles.

We also mention two natural questions. Any graph that is solvable in peg solitaire on
graphs is also solvable in reversible peg solitaire on graphs, and in particular can be solved
with zero unjumps. Suppose that we let k count the minimum number of unjumps needed to
solve a graph G in reversible peg solitaire. There are two natural questions associated with
this parameter k.

Question 1.4. Given a graph G that is solvable in reversible peg solitaire, what is the
minimum number of unjumps necessary to solve G?

Question 1.5. For a fixed k, which graphs are solvable with at most k unjumps?

The proof of Theorem 1.2 uses at most cn2 unjumps to solve a connected non-star graph
containing a vertex of degree at least 3.

3

2 Proofs

In this section we will first prove that if G 6= K1,n−1 is a graph that contains a vertex of
degree at least 3, then G is solvable. If n = 4, then since there is a vertex of degree at least 3
and G 6= K1,3, there must exist a triangle with a pendant edge as a (not necessarily induced)
subgraph. Using only the edges on this subgraph, G is solvable by inspection. Therefore we
assume that n ≥ 5; note that we may also assume that G is a non-star tree with a vertex of
degree at least 3.

The main idea of the proof is to analyze the configurations of pegs on a graph H, where
H is a claw K1,3 with one subdivided edge (see Figure 3). Notice that any connected non-star
graph with n ≥ 5 and a vertex of degree at least 3 has H as a (not necessarily induced)
subgraph. Using these configurations, we show how to iteratively bring pegs from outside H
into H and remove them, which eventually removes all pegs but one.

a

b

c d e

Figure 3: The graph H, which is a claw with one subdivided edge.

In the written notation for a configuration of pegs on H, we will let a letter indicate the
presence of a peg and the absence of a letter indicate a hole; for example, ace indicates pegs
on a, c, and e and holes on b and d. Two configurations on H are equivalent if we may move
from one configuration to the other through a series of jumps and unjumps within H. We
now separate out the configurations on H that are equivalent to a configuration on H that
contain a single peg.

Lemma 2.1. The rows in the following table represent two equivalence classes of configura-
tions on H. The four unlisted configurations contain no jumps or unjumps within H.

Class A a, b, d, e, ac, bc, cd, abe, ade, bde, abcd, abce, acde, bcde
Class B c, ab, ad, ae, bd, be, de, abc, acd, ace, bcd, bce, cde, abde

Proof. Letting x↔ y indicate that configurations x and y differ by a single jump/unjump,
we have:

e↔ cd↔ a↔ bc↔ d↔ ac↔ ade↔ bcde↔ abe↔ acde↔ bde↔ abce.

Noting that also b ↔ cd and abcd ↔ abe, this produces the configurations in Class A. For
Class B, we have

c↔ de↔ bce↔ ae↔ acd↔ ab↔ bcd↔ be↔ ace.

Noting that also ad ↔ abc ↔ bd ↔ acd, cde ↔ ae, and abde ↔ abc, this produces the
configurations in Class B. The remaining four configurations (abcde, abd, ce, and the empty
configuration) each have no possible jumps or unjumps within H.

4

Next, we define a move that we will repeatedly use in our proof.

P4–Move: Given a P4 that has one peg (hole, resp.) on an endpoint

and holes (pegs, resp.) on the other three vertices, we can

move the peg (hole, resp.) to the other endpoint.

Proof. Do an unjump (jump, resp.) to the two middle pegs, and then do a jump (unjump,
resp.) to the other endpoint.

Now we move on to the main proof.

Proof of Theorem 1.2. Let G be a connected non-star graph with n ≥ 5 and a vertex of
degree at least 3. We first show that G is freely solvable, and discuss the necessary and
sufficient conditions for G to be doubly freely solvable at the end. We can find H as a (not
necessarily induced) subgraph of G; fix one such H for the remainder of the freely solvable
proof. Suppose also that there are are pegs on all but a single vertex in G. If the hole starts
outside of H, we can use the P4–Move to shift it onto H. In particular, we now have a
configuration on H in Class A or Class B. The following procedure will leave a single peg on
a vertex in G.

Fix a peg outside of H that is closest to H. We move to an equivalent configuration on
H (within the same class, as defined in Lemma 2.1); the configuration chosen will depend on
the distance from H as well as the vertex in H closest to the peg under consideration. Since
this is a closest peg, we use the P4–Move, if necessary, to move the peg within distance 3 of
H. See Figure 4; in this case we consider the peg to be on either x1, x2, or x3.

We now absorb the peg into H while maintaining a configuration on H in either Class A
or Class B applying one of the following cases.

Case 1: The peg is nearest to a. See Figure 4. (Notice that this is equivalent to the
peg being nearest to b.)

a

b

c d e

x1x2x3

Figure 4: Case 1.

If the configuration on H is in Class A to start, we use configuration b (). Using the
P4–Move we can move the peg to either a, c, or d, which puts us in either Class A or Class B.

If the configuration on H is in Class B to start, we use configuration de (). Using
the P4–Move we can move the peg to a, b, or c, which puts us in either Class A or Class B.

Case 2: The peg is nearest to c.

5

If the configuration on H is in Class A to start, we use configuration b (). Using
the P4–Move we can move the peg to c, d, or e, which puts us in either Class A or Class B.

If the configuration on H is in Class B to start and we consider a peg on x1 or x3, then

we use configuration ab (). Using the P4–Move we can move the peg to c or e, which
puts us in either Class A or Class B.

If instead the configuration on H is in Class B to start and we consider a peg on x2, then

we use configuration be (). Using the P4–Move we can move the peg to a, which puts
us in Class A.

Case 3: The peg is nearest to d.

If the configuration on H is in Class A to start, we use configuration b (). Using
the P4–Move we can move the peg to a, c, or d, which puts us in either Class A or Class B.

If the configuration on H is in Class B to start, then we use configuration be ().
Using the P4–Move we can move the peg to a, c, or d, which puts us in either Class A or
Class B.

Case 4: The peg is nearest to e.

If the configuration on H is in Class A to start, we use configuration b (). Using
the P4–Move we can move the peg to c, d, or e, which puts us in either Class A or Class B.

If the configuration on H is in Class B to start and we consider a peg on x1 or x3, then

we use configuration ab (). Using the P4–Move we can move the peg to c or e, which
puts us in either Class A or Class B.

If instead the configuration on H is in Class B to start and we consider a peg on x2, then

we use configuration c (). Using the P4–Move we can move the peg to d, which puts us
in Class A.

Since each step reduces the number of pegs outside H by one, after iterating |V (G)| − 5
times the process terminates with H in Class A or Class B and no pegs outside of H. Since
each of Class A and Class B contains a configuration with a single peg, the proof is complete.

We next prove necessary and sufficient conditions for G to be doubly freely solvable. First,
suppose that all paths joining vertices of degree at least 3 have length divisible by 3. We
use a weighting argument to show that G is not doubly freely solvable. Choose a vertex v of
degree at least 3, and assign a weight of 0 to all vertices w such that a path from v to w with
length divisible by 3 exists. All other vertices are assigned a weight of 1. This is well-defined
by the assumption on the vertices of degree at least 3; note that all vertices of degree at least
3 receive weight 0. Then define the total weight of a configuration to be the sum (mod 2) of
the weights on the vertices containing pegs (this is similar to a pagoda function defined in
[5]). Since every path P3 contains exactly two vertices with weight 1, each jump and unjump
preserves the total weight. This implies that initial configurations with total weight 0 must
end with a peg on a vertex having weight 0, and initial configurations with total weight 1
must end with a peg on a vertex having weight 1. The P4–Move shows that a single peg on
any weight 0 vertex can be moved to any other weight 0 vertex. The P4–Move also shows
that a single peg on any weight 1 vertex can be moved to either a, b, d, or e in H, and since
these configurations are equivalent in H, this shows that a single peg on any weight 1 vertex
can be moved to any other weight 1 vertex.

6

Now suppose that there are two vertices v1 and v2 of degree at least 3 that have a path P
between them of length not divisible by 3. Consider the two possible copies of H, H1 and
H2, with degree 3 vertices v1 and v2 so that the respective d and e vertices (in the respective
copies of H) lie on P ; if P only contains v1 and v2, then we require that the respective e
vertices lie on the respective copies of H. We have shown that any initial hole can be reduced
to a single peg on a vertex in H1. By the P4–Move, a peg on v1 in H1 can be moved to a peg
on either d or e in H2. By Lemma 2.1 this peg can be moved to either e or d, respectively, in
H2, which by the P4–Move again can be moved back to H1 to a vertex other than v1. This
procedure is reversible, and so by using P and H2 we can move from Class A to Class B in
H1 when there is a single peg remaining in G. Since any vertex in G has a path to a vertex
in H1 so that the length of the path is a multiple of 3, we may use the P4–Move to place the
final peg on any vertex of G.

Proof of Theorem 1.3. It is shown in [2] that P2k is solvable for peg solitaire (without unjumps)
when the hole starts on a vertex adjacent to a leaf, so it remains solvable in reverse peg
solitaire. For P3` with ` odd, let the vertices be {1, 2, 3, . . . , 3` − 1, 3`} and start with the
hole on vertex 3. Jump from 1 into 3, and then use the P4–Move to shift the hole on vertex 2
to vertex 3` − 1. Then vertices 2, 3, . . ., 3` − 1, and 3` form an even path where there is
a single hole on a vertex adjacent to a leaf, which is solvable. Note that by reversing the
roles of pegs and holes in each of these cases, we obtain possible starting hole and ending peg
configurations for solvable paths.

Since Pn is solvable in these cases and Pn is a subgraph of Cn, Cn is freely solvable in
these cases.

We now fully classify paths and cycles using another weighting argument. We use, as
weights, the elements the multiplicative quaternion group Q8, which has presentation

Q8 = 〈−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = ijk = −1〉.

In particular, note that ij = k, jk = i, and ki = j.
For Pn with vertices {1, 2, 3, . . . , n}, assign weight i to vertex x if x mod 3 = 1, weight j

to vertex x if x mod 3 = 2, and weight k to vertex x if x mod 3 = 0. The total weight of a
configuration is the product of the weights of the vertices containing pegs when written from
smallest to largest vertex. For example, if on P5 we have pegs on vertices 1, 3, 4, and 5, then
the total weight of that configuration is ikij = −i.

Note that: (a) moves preserve the total weight of a configuration, (b) we can assume, by
the P4-move, an initial (final, resp.) configuration has a hole (peg, resp.) on vertex 1, 2, or 3,
and (c) the total weight of a configuration with a single peg is either i (if the peg is on vertex
1), j (if the peg is on vertex 2), or k (if the peg is on vertex 3).

We use these observations to fully classify paths Pn where n ≥ 3. We have the following
six cases.

1. If n = 6`, then an initial hole on 1, 2, or 3 gives an initial configuration weight of −i, j,
or −k, respectively. Therefore the hole must start on 2 and the final peg must end on 2.

2. If n = 6` + 1, then an initial hole on 1, 2, or 3 gives an initial configuration weight of 1,
−k, or −j, respectively. Therefore these paths are not solvable.

7

3. If n = 6` + 2, then an initial hole on 1, 2, or 3 gives an initial configuration weight of j,
i, or 1, respectively. Therefore the hole must start on 1 or 2 and the final peg must end
on 2 or 1, respectively.

4. If n = 6` + 3, then an initial hole on 1, 2, or 3 gives an initial configuration weight of i,
−j, or k, respectively. Therefore the hole must start on 1 or 3 and and the final peg
must end on 1 or 3, respectively.

5. If n = 6` + 4, then an initial hole on 1, 2, or 3 gives an initial configuration weight of
−1, k, or j, respectively. Therefore the hole must start on 2 or 3 and and the final peg
must end on 3 or 2, respectively.

6. If n = 6` + 5, then an initial hole on 1, 2, or 3 gives an initial configuration weight of
−j, −i, or −1, respectively. Therefore these paths are not solvable.

Since these six cases give the total weight of any possible initial hole or final peg configuration
(and the P4–Move allows an initial hole or final peg to be shifted by distance 3), this fully
classifies the possible starting hole and final peg positions for Pn.

What about Cn for n ≥ 3? We know that the cycle Cn is freely solvable unless n = 6k + 1
or n = 6k + 5. We use a similar weighting scheme to show the remaining cycles are not
solvable and to classify the cycles that are doubly freely solvable.

Fix one cyclic orientation of the vertices of Cn; label them {1, 2, . . . , n}. We then consider
C3n with vertices {1, 2, . . . 3n} such that each move on Cn corresponds to three moves on C3n,
where the three moves are equivalent copies of the move on those vertices with labels that
differ by n. For example, if n = 5 and a move jumps a peg on vertex 2 over a peg on vertex 1
into a hole on vertex 5, then in C15 the pegs on vertices 2, 7, and 12 jump over the pegs on
vertices 1, 6, and 11 into holes on vertices 15, 5, and 10.

As before, define the total weight of a configuration to be the product of the weights of
the vertices containing pegs when written from smallest to largest vertex. Notice that the
sets of moves made on C3n preserve the total weight (here, the fact that ijk = kij = jki and
jik = kji = kij is essential).

Suppose that n = 6`+ 1. Then an initial configuration in C3n (corresponding to an initial
configuration in Cn with a single hole) has total weight 1 and a final configuration in C3n

(corresponding to a final configuration in Cn with a single peg) has pegs in C3n on x, x + n,
and x + 2n for some x ∈ {1, 2, . . . , n}. But this means a final configuration in C3n that
corresponds to a single peg in Cn has total weight −1. If n = 6` + 5, then a similar analysis
shows that an initial configuration in C3n (corresponding to an initial configuration in Cn

with a single hole) has total weight −1 while a final configuration in C3n (corresponding
to a final configuration in Cn with a single peg) has total weight 1. Therefore Cn, where
n = 6` + 1 or 6` + 5, is not solvable.

Similar arguments show that if a hole starts on vertex x in C6` and C6`+3, then the final
peg must be on vertex x + 3q for some integer q. In C6`+2 and C6`+4, the initial hole and
final peg can be anywhere (using the P4–Move).

8

References

[1] J. Beasley, The Ins & Outs of Peg Solitaire, Oxford Univ. Press, 1985.

[2] R. Beeler and P. Hoilman, Peg solitaire on graphs, Discrete Math. 311 (2011), 2198-2202.

[3] R. Beeler and P. Hoilman, Peg solitaire on the windmill and the double star graphs,
Australas. J. Combin. 52 (2012), 127-134.

[4] R. Beeler and T. Rodriguez, Fool’s solitaire on graphs, Involve 5(4) (2012), 473-480.

[5] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for your Mathematical Plays Vol.
4, A K Peters Ltd., Natick, MA 2004.

[6] A. Deza and S. Onn, Solitaire Lattices, Graphs Combin. 18 (2002), 227-243.

[7] R. Fleischer and J. Yu, A Survey of the Game “Lights Out!”, Proc. Space-Efficient Data
Structures, Streams, and Algorithms (2013), 176-198.

[8] S. Loeb and J. Wise, Fool’s Solitaire on Joins and Cartesian Products of Graphs, Discrete
Math. 338 (2015), 66-71.

[9] C. Walvoort, Peg solitaire on trees with diameter four. Master’s thesis, East Tennessee
State University, 2013.

9

	Introduction
	Proofs

