Problem

John Engbers, Marquette University \& Adam Hammett, Cedarville University
PROBLEM: Let k and n be positive integers, and let $m=\min \{k, n\}$. Prove that for each integer $y \in[0, m]$, we have

$$
\sum_{x=y}^{m}\left\{\begin{array}{l}
n \\
x
\end{array}\right\}(x)_{y}(k-y)_{x-y}=\sum_{i=0}^{y}\binom{y}{i}(-1)^{i}(k-i)^{n} .
$$

Here, for $a \in \mathbb{R}$ and $b \in \mathbb{Z}^{+}$, we have $(a)_{b}:=a(a-1) \cdots(a-b+1)$ and $(a)_{0}:=1$, and $\left\{\begin{array}{l}n \\ x\end{array}\right\}$ is the Stirling number of the second kind, i.e. the number of ways to partition the set $[n]:=\{1,2, \ldots, n\}$ into x nonempty blocks.

