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Abstract

In the same vein of Arnold Insel’s capsule [4], we present a direct
geometric derivation of the integral formulae for the inverse hyperbolic
functions. We then use these formulae to obtain the derivatives of the
various hyperbolic trig functions.

1 Introduction

The mere mention of hyperbolic (trig) functions in the classroom setting typi-
cally invokes a collective student yawn, so consideration of the inverse hyper-
bolic functions is a recipe for mass napping! Moreover, it has been our expe-
rience that even professional mathematicians tend to have a purely analytical
understanding of the hyperbolic functions. That is, most are well-aware that
these functions are built upon the identities

cosh t =
1

2

(
et + e−t

)
and sinh t =

1

2

(
et − e−t

)
, (1)

and then facts about the hyperbolic functions are obtained by manipulation of
these identities, using known facts about the exponential. Along these lines, the
typical calculus textbook development introduces the hyperbolic functions via
equation (1), and then the inverses afterward via a purely algebraic manipulation
of (1). Finally, to wrap up the discussion, differentiation of the inverses yields
the usual integral equations for the inverse hyperbolic functions (see, e.g., [1,
pp. 365–371]).
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However, there is a well-known, beautiful way to think about these functions
that, unfortunately, rarely makes its way into calculus textbooks. In contrast,
this approach has the benefit of being described very geometrically instead of
analytically, mirroring the development of the ordinary trig functions on the
unit circle x2 + y2 = 1. What’s more, this way of thinking will reveal a direct
geometric proof, independent of (1), that the inverse hyperbolic functions can be
written as certain definite integrals, which in turn delivers all the derivatives of
the various hyperbolic functions! In the capsule [4], Arnold Insel gave a parallel
argument for the ordinary trig functions.

2 Parametrizing the “unit hyperbola” by area

There are many lucid presentations of the material in this section; see, for
example, the wonderful exposition given by Isaac Greenspan in [2].

We define the “unit hyperbola” to be the right branch of the hyperbola x2−
y2 = 1, so that x ≥ 1. Given (x, y) on the unit hyperbola in the first quadrant,
let’s consider the segment joining the origin to this point. This segment, together
with the positive x-axis and the unit hyperbola encloses a region of a particular
area, which we denote by t/2 (see Figure 1); the reason for the factor 1/2 will
be clear soon. Points on the unit hyperbola belonging to the fourth quadrant
will be considered later.

Figure 1: The “unit hyperbola” parametrized by area.

We challenge the interested reader to check that, if we instead started with
(x, y) a point on the unit circle x2 + y2 = 1, and θ/2 defined as the area of the
circular sector subtended by the segment joining the origin to (x, y) and the
positive x-axis, then we would have x = cos θ and y = sin θ. In other words,
for the usual trigonometric parametrization of the unit circle, the argument θ
of the trig functions is equal to twice the area of the subtended circular sector.
Of course, θ also happens to be the central angle (measured in radians) of this
sector!
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Emboldened by this observation in the case of ordinary trig functions, we
define the hyperbolic sine and cosine functions by x = cosh t and y = sinh t,
where (to repeat) t/2 is the area of the “hyperbolic sector” in Figure 1. To
be clear, this parametrization by area goes back to at least an 1895 article of
Mellon W. Haskell [3]. This immediately begs the question: Is this alternative
definition for the hyperbolic functions equivalent to (1)? Of course, the answer
is “yes”; let us see why. By our definition of t and integrating with respect to
the vertical direction, we have

t = 2

∫ sinh t

0

√
1 + v2 dv − cosh t sinh t (v = tanu)

= 2

∫ arctan(sinh t)

0

sec3 u du− cosh t sinh t

=
(

ln | secu+ tanu|+ secu tanu
)∣∣∣arctan(sinh t)

0
− cosh t sinh t

= ln (cosh t+ sinh t) ; (2)

here, we have used the fact that cosh2 t− sinh2 t = 1 (since we are on the unit
hyperbola), as well as sec (arctanα) =

√
1 + α2. We leave it to the interested

reader to use (2) in tandem with cosh2 t− sinh2 t = 1 to show that (1) holds.

3 Proof of the integral formulae

We are now ready to deliver on our promise to explain, geometrically, the various
inverse hyperbolic integral formulae. First, by our very definition, since x =
cosh t and y = sinh t we have that arccoshx = arcsinh y = t is twice the area
of the hyperbolic sector in Figure 1. On the other hand, the unit hyperbola
written in polar coordinates is given by

r2 cos2 θ − r2 sin2 θ = 1 =⇒ r2 =
1

cos2 θ − sin2 θ
=

sec2 θ

1− tan2 θ
.

Thus, we can express the area t in polar coordinates as below:

t =

∫ arctan(y/x)

0

sec2 θ

1− tan2 θ
dθ

(
u = tan θ; du = sec2 θ dθ

)
=

∫ y/x

0

du

1− u2

(
1− u2 =

1

1 + v2
;

du

1− u2
=

(v/u) dv

1 + v2

)
(3)

=

∫ y

0

dv√
1 + v2

(
1 + v2 = w2;

dv

w
=
dw

v

)
(4)

=

∫ x

1

dw√
w2 − 1

. (5)
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Since z := tanh t = y/x, from (3)–(5) we obtain

arccoshx =

∫ x

1

dw√
w2 − 1

, arcsinh y =

∫ y

0

dv√
1 + v2

,

arctanh z =

∫ z

0

du

1− u2
. (6)

Throughout, we have assumed that we are in the first quadrant; this means
that our formulas hold for y > 0. For y = 0, we have x = 1 and so our
formulas clearly hold. For points on the unit hyperbola in the fourth quadrant,
we have y < 0. By letting the area of the sector be negative (to agree with
integration), the area of the sector is t/2 with t < 0, and by symmetry we have
x = cosh(t) = cosh(−t) and y = sinh(t) = − sinh(−t) (where −t > 0). Since
with this interpretation for t < 0 we still have our two integral formulas t =

2
∫ sinh(t)

0

√
1 + v2 dv − cosh t sinh t and t =

∫ arctan(y/x)

0
sec2 θ

1−tan2 θ dθ (as our angle
arctan(y/x) is negative here), our formulae (2)–(6) hold for fourth quadrant
points as well.

Note that the fundamental theorem of calculus applied to (6) gives the
derivatives of the inverse hyperbolic functions, and then the inverse function
theorem can be applied to obtain

d

dt
(sinh t) =

√
1 + sinh2 t = cosh t,

d

dt
(cosh t) =

√
cosh2 t− 1 = sinh t,

d

dt
(tanh t) = 1− tanh2 t = sech 2t. (7)

Any other derivative of one’s favorite hyperbolic function is now easily obtained
from these!

Remark. The careful reader will note that formula (2), t = ln (cosh t+ sinh t),
is equivalent to the identities

arccoshx = ln
(
x+

√
x2 − 1

)
and arcsinh y = ln

(√
1 + y2 + y

)
, (8)

from which the first two formulas in (6) may alternatively be obtained upon
differentiating.
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