

Counting graph homomorphisms

John Engbers

Department of Mathematics
University of Notre Dame
MIGHTY LIII — Iowa State University, Ames, IA
September 22, 2012

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.
G :

$$
H=H_{\text {ind }}:
$$

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.
G :

$$
H=H_{\text {ind }}:
$$

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\text {ind }}:
$$

Examples: independent sets,

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=K_{q}:
$$

Examples: independent sets, proper q-colorings,

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, Widom-Rowlinson

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, Widom-Rowlinson Notation: $\operatorname{hom}(G, H)=$ number of homomorphisms from G to H.

An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.
G :

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, Widom-Rowlinson
Notation: $\operatorname{hom}(G, H)=$ number of homomorphisms from G to H.

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex m-edge graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}, H=H_{\text {WR }}$, class of H (Cutler-Radcliffe)

Lex $(8,11)$

Colex (8, 11)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}, H=H_{\text {WR }}$, class of H (Cutler-Radcliffe)

Lex $(8,11)$

Colex (8, 11)

- $H=K_{q}$: various results, still open

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all H (Galvin-Tetali)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs
- $H_{\text {ind }}$ (Zhao), class of H (Zhao, Galvin)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs
- $H_{\text {ind }}$ (Zhao), class of H (Zhao, Galvin)

Open Conjecture

Fix H. For $\mathcal{G}=n$-vertex d-regular graphs, hom (G, H) is maximized when $G=\frac{n}{2 d} K_{d, d}$ or $\frac{n}{d+1} K_{d+1}$.

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?

Today's family

$\mathcal{G}=\mathcal{G}(n, \delta)=n$-vertex graphs with minimum degree δ

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Theorem (Galvin, 2011)
For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom ($G, H_{\text {ind }}$) is maximized when $G=K_{\delta, n-\delta}$.

Today's family

$\mathcal{G}=\mathcal{G}(n, \delta)=n$-vertex graphs with minimum degree δ

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Theorem (Galvin, 2011)
For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom ($G, H_{\text {ind }}$) is maximized when $G=K_{\delta, n-\delta}$.

Today's family

$\mathcal{G}=\mathcal{G}(n, \delta)=n$-vertex graphs with minimum degree δ

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Theorem (Galvin, 2011)
For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom $\left(G, H_{\text {ind }}\right)$ is maximized when $G=K_{\delta, n-\delta}$.

Note: $\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\text {ind }}\right) \geq 2^{n-\delta}$.
Convention: Loops add 1 to degree

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Progress:

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}$.

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \boldsymbol{X}$

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \boldsymbol{x}$
- $H_{\mathrm{WR}}: \sum d(v)=7 ;\left(\Delta_{H}\right)^{2}=9 \checkmark$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

O $\} I$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$\operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$$
\begin{aligned}
& \left.\begin{array}{l}
K \\
K \\
x_{1} O
\end{array}\right\} \\
& \operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}=\left(\frac{\sum d(v)}{\left(\Delta_{H}\right)^{2}}\right)^{|M|} 3^{n}
\end{aligned}
$$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$$
\begin{aligned}
& \begin{array}{l}
K\{\bigcirc \bigcirc \\
J\{\bigcirc \bigcirc
\end{array} \\
& \operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}=\left(\frac{\sum d(v)}{\left(\Delta_{H}\right)^{2}}\right)^{|M|} 3^{n}
\end{aligned}
$$

Any maximizing graph G has $|M| \leq c \delta$

Idea of proof for $H=H_{\mathrm{WR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I.

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I.

Then:

- Case 1: All δ vertices get color gray $\left(<\left(\frac{7}{9}\right) 3^{n-\delta}\right)$

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I.

Then:

- Case 1: All δ vertices get color gray $\left(<\left(\frac{7}{9}\right) 3^{n-\delta}\right)$
- Case 2: At least 1 of δ vertices gets color blue/red $\left(<\left(\frac{2}{3}\right)^{\Omega(n)} 3^{n}\right)$

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)
Future directions:
- Notice:

$$
\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad \text { Maximized in } \mathcal{G}(n, 2) \text { by } K_{2, n-2}
$$

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?
- $\delta=3$? Other small values of δ ?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?
- $\delta=3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs $(\delta \geq 3)$?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$$
\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad \text { Maximized in } \mathcal{G}(n, 2) \text { by } K_{2, n-2}
$$

Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?

- $\delta=3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs $(\delta \geq 3)$?

Thank you!

