

Counting graph homomorphisms

John Engbers

Department of Mathematics University of Notre Dame

MIGHTY LIII - Iowa State University, Ames, IA

September 22, 2012

Counting graph homomorphisms

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that

preserves edge adjacency.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that

preserves edge adjacency.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that

preserves edge adjacency.

Examples: independent sets,

不同 トイモトイモ

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

preserves edge adjacency.

Examples: independent sets, proper q-colorings,

The Sec. 74

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

preserves edge adjacency.

Examples: independent sets, proper q-colorings, Widom-Rowlinson

The Sec. 74

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency

preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, Widom-Rowlinson **Notation:** hom(G, H) = number of homomorphisms from *G* to *H*.

イロト イポト イラト イラ

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that

preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, Widom-Rowlinson **Notation:** hom(G, H) = number of homomorphisms from *G* to *H*.

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

John Engbers (Notre Dame)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *m*-edge graphs

A (10) A (10) A (10)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *m*-edge graphs
 - $H = H_{ind}$, $H = H_{WR}$, class of H (Cutler-Radcliffe)

A (1) > A (2) > A

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *m*-edge graphs
 - $H = H_{ind}$, $H = H_{WR}$, class of H (Cutler-Radcliffe)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

A (10) A (10)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

• $H = H_{ind}$ (Kahn), generalized to all H (Galvin-Tetali)

 $\frac{n}{2d}K_{d,d}:$

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

G = *n*-vertex *d*-regular bipartite graphs
 H = *H*_{ind} (Kahn), generalized to *all H* (Galvin-Tetali)

• $\mathcal{G} = n$ -vertex *d*-regular graphs

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs
 - $H = H_{ind}$ (Kahn), generalized to all H (Galvin-Tetali)

- G = n-vertex *d*-regular graphs
 - *H*_{ind} (Zhao), class of *H* (Zhao, Galvin)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs
 - $H = H_{ind}$ (Kahn), generalized to all H (Galvin-Tetali)

- $\mathcal{G} = n$ -vertex *d*-regular graphs
 - *H*_{ind} (Zhao), class of *H* (Zhao, Galvin)

Open Conjecture

Fix *H*. For $\mathcal{G} = n$ -vertex *d*-regular graphs, $\hom(G, H)$ is maximized when $G = \frac{n}{2d}K_{d,d}$ or $\frac{n}{d+1}K_{d+1}$.

 $\mathcal{G} = \mathcal{G}(n, \delta) = n$ -vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

 $\mathcal{G} = \mathcal{G}(n, \delta)$ = *n*-vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8\delta^2$, $\hom(G, H_{ind})$ is maximized when $G = K_{\delta, n-\delta}$.

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{G} = \mathcal{G}(n, \delta) = n$ -vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8\delta^2$, $\hom(G, H_{ind})$ is maximized when $G = K_{\delta, n-\delta}$.

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{G} = \mathcal{G}(n, \delta) = n$ -vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \ge 8\delta^2$, $\hom(G, H_{ind})$ is maximized when $G = K_{\delta, n-\delta}$.

Note: hom $(K_{\delta,n-\delta}, H_{\text{ind}}) \geq 2^{n-\delta}$.

Convention: Loops add 1 to degree

John Engbers (Notre Dame)

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Progress:

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies ∑_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

イロト イ団ト イヨト イヨト

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

•
$$H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$$

3 > 4 3

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

•
$$H_{\text{ind}}$$
 : $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$

• $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Progress:

Theorem (E., 2012+)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

- $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $H_{\mathsf{WR}}: \sum d(v) = 7; (\Delta_H)^2 = 9 \checkmark$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 >

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\operatorname{hom}(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$\hom(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(rac{7}{3^2}
ight)^{|M|} 3^n$$

< ロ > < 同 > < 回 > < 回 >

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$K\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ J\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}\right\}I$$

$$\hom(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n = \left(\frac{\sum d(v)}{(\Delta_H)^2}\right)^{|M|} 3^n$$

A (10) > A (10) > A (10)

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$K\left\{\begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ J\left\{\begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}\right\}I$$

$$\hom(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n = \left(\frac{\sum d(v)}{(\Delta_H)^2}\right)^{|M|} 3^n$$

Any maximizing graph *G* has $|M| \leq c\delta$

John Engbers (Notre Dame)

Idea of proof for $H = H_{WR}$

Graphs with $|M| \le \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

Idea of proof for $H = H_{WR}$ Graphs with $|M| \le \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes Graphs with $\delta + 1 \le |M| \le c\delta$:

Idea of proof for $H = H_{WR}$ Graphs with $|M| \le \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes Graphs with $\delta + 1 \le |M| \le c\delta$:

Facts:

I is an independent set

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J

A (10) A (10) A (10)

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in I.

4 6 1 1 4

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J

• Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{2}} = \Omega(n)$ neighbors in I.

Then:

• Case 1: All δ vertices get color gray (< $\left(\frac{7}{9}\right) 3^{n-\delta}$)

イロト イポト イラト イラ

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:

- I is an independent set
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{2}} = \Omega(n)$ neighbors in I.

Then:

- Case 1: All δ vertices get color gray (< $\left(\frac{7}{9}\right) 3^{n-\delta}$)
- Case 2: At least 1 of δ vertices gets color blue/red ($< \left(\frac{2}{3}\right)^{\Omega(n)} 3^n$)

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge ⇒ minimum degree drops)

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge => minimum degree drops)
 Future directions:

Notice:

$$\sum_{\nu \in V(H)} d(\nu) = 5; (\Delta_H)^2 = 4$$

Maximized in $\mathcal{G}(n,2)$ by $K_{2,n-2}$

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs *G* (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2, n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs *G* (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

• $\delta = 3$? Other small values of δ ?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs *G* (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

- $\delta = 3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs ($\delta \geq 3$)?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs *G* (remove any edge minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

- $\delta = 3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs (δ ≥ 3)?
 Thank you!

John Engbers (Notre Dame)

イロト 不得 トイヨト イヨト ニヨー