

Extremal questions for *H*-colorings

John Engbers

Department of Mathematics University of Notre Dame

Graph Theory Seminar — Western Michigan University, Kalamazoo, MI

November 14, 2012

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

∃ ► < ∃ ►</p>

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

∃ ► < ∃ ►</p>

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

3 + 4 = +

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets,

The Sec. 74

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings,

∃ ► < ∃</p>

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite,

B N A B N

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite, components,

∃ ► < ∃ ►</p>

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

The Sec. 74

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

• Terminology: map/color the vertices of G

∃ ► < ∃</p>

A D b 4 A b

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- *H* is a 'blueprint'; it encodes the coloring scheme

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- *H* is a 'blueprint'; it encodes the coloring scheme
- Natural for H to have loops

Notations:

 $Hom(G, H) = \{H \text{-colorings of } G\}$

э

イロト イポト イヨト イヨト

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

Note:

• $hom(G, H_{comp}) = 2^{\# \text{ components of } G}$

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

Note:

• $hom(G, H_{comp}) = 2^{\# \text{ components of } G}$

< ロ > < 同 > < 回 > < 回 >

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

Note:

• $hom(G, H_{comp}) = 2^{\# \text{ components of } G}$

< ロ > < 同 > < 回 > < 回 >

Notations:

 $Hom(G, H) = \{H\text{-colorings of } G\}$ hom(G, H) = |Hom(G, H)|

Note:

• $hom(G, H_{comp}) = 2^{\# \text{ components of } G}$

• $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\# \text{ bipartite components of } G}$

Also: d(v) is the degree of v (where loops count *once*) **Why?**

э

< ロ > < 同 > < 回 > < 回 >

Also: d(v) is the degree of v (where loops count *once*) **Why?**

4 6 1 1 4

Also: d(v) is the degree of v (where loops count *once*) Why?

• w is red

4 6 1 1 4

Also: d(v) is the degree of v (where loops count *once*) **Why?**

• w is red \implies each neighbor of w has 1 choice (d(red) = 1)

John Engb	pers (Notre	Dame)
-----------	-------------	-------

4 6 1 1 4

- N

Also: d(v) is the degree of v (where loops count *once*) **Why?**

w is red ⇒ each neighbor of *w* has 1 choice (*d*(red) = 1) *w* is gray

The Sec. 74

Also: d(v) is the degree of v (where loops count *once*) **Why?**

• w is red \implies each neighbor of w has 1 choice (d(red) = 1)

• w is gray \implies each neighbor of w has 2 choices (d(gray) = 2)

The Sec. 74

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

B N A B N

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

A D M A A A M M

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

A D M A A A M M

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

• Spins = colors; a spin configuration is an *H*-coloring

The Sec. 74

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

Spins = colors; a spin configuration is an H-coloring

Can put weights on the spins

∃ ► < ∃</p>

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

- Spins = colors; a spin configuration is an *H*-coloring
- Can put weights on the spins
- This idea generalizes to putting objects (with relationships) into classes with hard rules

John Engbers (Notre Dame)

Questions to ask

John Engbers (Notre Dame)

2

イロト イヨト イヨト イヨト

Questions to ask

Existential

• Given a G and H, does an H-coloring of G exist? [hard]

< ロ > < 同 > < 回 > < 回 >

Questions to ask

Existential

• Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an *H*-coloring of *G*?
- Can we obtain a (uniform) random *H*-coloring of *G*?
- Can we quickly move from one *H*-coloring of *G* to another via random local updating algorithms?

B N A **B** N

A D M A A A M M

Questions to ask

Existential

• Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an *H*-coloring of *G*?
- Can we obtain a (uniform) random *H*-coloring of *G*?
- Can we quickly move from one *H*-coloring of *G* to another via random local updating algorithms?

Structural

• e.g. What does the typical *H*-coloring of *G* look like?

BA 4 BA

Questions to ask

Existential

• Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an *H*-coloring of *G*?
- Can we obtain a (uniform) random *H*-coloring of *G*?
- Can we quickly move from one *H*-coloring of *G* to another via random local updating algorithms?

Structural

• e.g. What does the typical *H*-coloring of *G* look like?

Enumerative

• What is hom(G, H)? [hard]

BA 4 BA

Questions to ask

Existential

• Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an *H*-coloring of *G*?
- Can we obtain a (uniform) random *H*-coloring of *G*?
- Can we quickly move from one *H*-coloring of *G* to another via random local updating algorithms?

Structural

• e.g. What does the typical *H*-coloring of *G* look like?

Enumerative

• What is hom(G, H)? [hard]

Extremal

Rest of this talk...

3

BA 4 BA

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Remarks:

• Pick *G* and *H*

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...

The Sec. 74

A D b 4 A b 4

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...
- Perspective switch: Consider \mathcal{G} , answer for H_1 , then H_2 , ...

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for \mathcal{G}_1 , then \mathcal{G}_2 , ...
- Perspective switch: Consider \mathcal{G} , answer for H_1 , then H_2 , ...
- Hope: A small list of graphs G maximize hom(G, H) for every H.

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• G = n-vertex graphs

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- G = n-vertex graphs
 - For any H, hom(G, H) is maximized when G =

4 6 1 1 4

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- G = n-vertex graphs
 - For any *H*, hom(*G*, *H*) is maximized when $G = E_n$

 $\hom(E_n, H) = |V(H)|^n$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- G = n-vertex graphs
 - For any H, hom(G, H) is maximized when $G = E_n$

 $\hom(E_n, H) = |V(H)|^n$

 Interesting families force each graph G to have a large number of edges.

3

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *m*-edge graphs

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

G = *n*-vertex *m*-edge graphs
 H = *H*_{ind}

- E

4 6 1 1 4

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *m*-edge graphs
 - $H = H_{ind}$, $H = H_{WR}$, class of H (Cutler-Radcliffe)

A D b 4 A b 4

- B

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *m*-edge graphs
 - $H = H_{ind}$, $H = H_{WR}$, class of H (Cutler-Radcliffe)

• $H = K_q$: various results, still open in general

A D b 4 A b

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *m*-edge graphs
 - $H = H_{ind}$, $H = H_{WR}$, class of H (Cutler-Radcliffe)

Lex(8,11)

Colex(8, 11)

A D b 4 A b

• $H = K_q$: various results, still open in general

Extremal graphs can be non-homogeneous

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

э

< ロ > < 同 > < 回 > < 回 >

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

4 3 5 4 3

4 A N

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

• $H = H_{ind}$ (Kahn)

 $\frac{n}{2d}K_{d,d}$:

The Sec. 74

< 6 b

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

• $H = H_{ind}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

 $\frac{n}{2d}K_{d,d}$:

4 A N

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

• $H = H_{ind}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

• $\mathcal{G} = n$ -vertex *d*-regular graphs

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs
 - $H = H_{ind}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

• $\mathcal{G} = n$ -vertex *d*-regular graphs

4 A N

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

- $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs
 - $H = H_{ind}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

- $\mathcal{G} = n$ -vertex *d*-regular graphs
 - *H*_{ind} (Zhao), class of *H* (Zhao, Galvin)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

• $\mathcal{G} = n$ -vertex *d*-regular bipartite graphs

 $\frac{n}{2d}K_{d,d}:$

• $H = H_{ind}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

*H*_{ind} (Zhao), class of *H* (Zhao, Galvin)

Open Conjecture

Fix *H*. For $\mathcal{G} = n$ -vertex *d*-regular graphs, $\hom(G, H)$ is maximized when $G = \frac{n}{2d}K_{d,d}$ or $\frac{n}{d+1}K_{d+1}$.

 $\mathcal{G} = \mathcal{G}(n, \delta)$ = *n*-vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{G} = \mathcal{G}(n, \delta)$ = *n*-vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Intuition: Maximizing graph is δ -regular (so likely either $\frac{n}{2\delta}K_{\delta,\delta}$ or $\frac{n}{\delta+1}K_{\delta+1}$).

 $\mathcal{G} = \mathcal{G}(n, \delta) = n$ -vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Intuition: Maximizing graph is δ -regular (so likely either $\frac{n}{2\delta}K_{\delta,\delta}$ or $\frac{n}{\delta+1}K_{\delta+1}$). FALSE!

 $\mathcal{G} = \mathcal{G}(n, \delta)$ = *n*-vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Intuition: Maximizing graph is δ -regular (so likely either $\frac{n}{2\delta}K_{\delta,\delta}$ or $\frac{n}{\delta+1}K_{\delta+1}$). FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \ge 8\delta^2$, hom (G, H_{ind}) is maximized when $G = K_{\delta, n-\delta}$.

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{G} = \mathcal{G}(n, \delta)$ = *n*-vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Intuition: Maximizing graph is δ -regular (so likely either $\frac{n}{2\delta}K_{\delta,\delta}$ or $\frac{n}{\delta+1}K_{\delta+1}$). FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \ge 8\delta^2$, hom (G, H_{ind}) is maximized when $G = K_{\delta, n-\delta}$.

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{G} = \mathcal{G}(n, \delta) = n$ -vertex graphs with minimum degree δ

Today's Question

Fix *H*. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom(G, H)?

Intuition: Maximizing graph is δ -regular (so likely either $\frac{n}{2\delta}K_{\delta,\delta}$ or $\frac{n}{\delta+1}K_{\delta+1}$). FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \ge 8\delta^2$, hom (G, H_{ind}) is maximized when $G = K_{\delta, n-\delta}$.

Note: hom
$$(K_{\delta,n-\delta}, H_{\text{ind}}) \ge 2^{n-\delta}$$
.

3

< ロ > < 同 > < 回 > < 回 >

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta,n-\delta}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta,n-\delta}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Sharpness:

• $H = H_{ind}$ maximized by $K_{\delta,n-\delta}$

4 3 5 4 3

Image: Image:

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta}K_{\delta, \delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Sharpness:

- $H = H_{ind}$ maximized by $K_{\delta,n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta}K_{\delta,\delta}$

4 3 5 4 3

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta,n-\delta}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Sharpness:

- $H = H_{ind}$ maximized by $K_{\delta,n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta}K_{\delta,\delta}$
- $H = H_{\text{comp}}$ maximized by $\frac{n}{\delta+1}K_{\delta+1}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: Image:

Conjecture

Fix *H*. For all $G \in \mathcal{G}(n, \delta)$ and *n* large enough, hom(G, H) is maximized when $G = K_{\delta,n-\delta}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Sharpness:

- $H = H_{ind}$ maximized by $K_{\delta,n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta}K_{\delta,\delta}$
- $H = H_{\text{comp}}$ maximized by $\frac{n}{\delta+1}K_{\delta+1}$

Emphasis: Infinite collection of H, small # of maximizing graphs

John Engbers (Notre Dame)

Progress:

2

イロト イヨト イヨト イヨト

Progress:

Theorem (E., 2012)

• Conjecture is true for $\delta = 1$, $\delta = 2$.

э

イロト イポト イヨト イヨト

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$.

3

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

• $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$

3

A B > A B >

< 17 ▶

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

- $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

- $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $K_2 : \sum d(v) = 2; (\Delta_H)^2 = 1$

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

- H_{ind} : $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $K_2: \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1$

3

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- H_{ind} : $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $K_2: \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1$
- H_{WR} : $\sum d(v) = 7; (\Delta_H)^2 = 9 \checkmark$

3

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies Σ_{v∈V(H)} d(v) < (Δ_H)². Then, for n > c^δ and G ∈ G(n, δ), hom(G, H) is maximized when G = K_{δ,n-δ}.

Examples:

- H_{ind} : $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $K_2: \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\mathsf{WR}}: \sum d(v) = 7; (\Delta_H)^2 = 9 \checkmark$

3

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that *H* satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom(G, H) is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- H_{ind} : $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q-1); (\Delta_H)^2 = (q-1)^2$
- $K_2: \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1$
- $H_{\mathsf{WR}}: \sum d(v) = 7; (\Delta_H)^2 = 9 \checkmark$
- Any* *H* with looped dominating vertex

Blue condition is combination of local (Δ_H) and global ($\sum_{v \in V(H)} d(v)$).

< (17) × <

3

John Engbers (Notre Dame)

John Engbers (Notre Dame)

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

< ロ > < 同 > < 回 > < 回 >

 $\operatorname{hom}(K_{\delta,n-\delta},H_{\mathsf{WR}}) \geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}})\geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$K\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ J\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right\} I$$

$$\mathsf{hom}(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(rac{7}{3^2}
ight)^{|M|} 3^n$$

4 3 5 4 3

< 6 b

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}})\geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$K\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ J\left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}\right\}I$$

$$\hom(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n = \left(\frac{\sum d(v)}{(\Delta_H)^2}\right)^{|M|} 3^n$$

4 3 5 4 3

< 6 b

 $\hom(K_{\delta,n-\delta},H_{\mathsf{WR}})\geq 3^{n-\delta}$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching *M*.

$$K \left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ J \left\{ \begin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right\} I \right\}$$

$$\hom(G, H_{\mathsf{WR}}) \le 7^{|M|} 3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n = \left(\frac{\sum d(v)}{(\Delta_H)^2}\right)^{|M|} 3^n$$

Any maximizing graph *G* has $|M| \leq c\delta$

John Engbers (Notre Dame)

Graphs with $|M| \le \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

3

Facts:

I is an independent set

John Engbers (Notre Dame)

Extremal H-colorings

November 2012 15 / 18

(B)

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.

A (10) A (10)

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I

12 N 4 12

4 A N

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I

4 3 5 4 3

< 6 b

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- Most vertices in I have all neighbors in J

4 3 5 4 3 5 5

A D b 4 A b

Facts:

- I is an independent set
 - There are at least $\delta(n-2|M|)$ edges from *I* to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{2}} = \Omega(n)$ neighbors in I.

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

• Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in I

Then:

The Sec. 74

< 6 b

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

• Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in I

Then:

• Case 1: All δ vertices get color gray ($\leq \left(\frac{7}{9}\right) 3^{n-\delta}$)

< 6 k

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

• Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in I

Then:

- Case 1: All δ vertices get color gray ($\leq \left(\frac{7}{9}\right) 3^{n-\delta}$)
- Case 2: At least 1 of δ vertices gets color blue/red ($\leq \left(\frac{2}{3}\right)^{\Omega(n)} 3^n$)

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

• Some set of δ vertices in *J* has $\approx \frac{n-2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in *I*

Then:

• Case 1: All δ vertices get color gray ($\leq \left(\frac{7}{9}\right) 3^{n-\delta}$)

• Case 2: At least 1 of δ vertices gets color blue/red ($\leq \left(\frac{2}{3}\right)^{\Omega(n)} 3^n$) And:

$$\left(\frac{7}{9}\right)3^{n-\delta} + \left(\frac{2}{3}\right)^{\Omega(n)}3^n < 3^{n-\delta} \le \hom(K_{\delta,n-\delta}, H_{\mathsf{WR}})$$

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge ⇒ minimum degree drops)

3

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge => minimum degree drops)
 Future directions:

Notice:

ì

$$\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4$$

Maximized in $\mathcal{G}(n,2)$ by $K_{2,n-2}$

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2, n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2, n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

• $\delta = 3$? Other small values of δ ?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs G (remove any edge => minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

- $\delta = 3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs ($\delta \geq 3$)?

Result for $\delta = 1, 2$:

 Analyze structural properties of *edge-critical* graphs *G* (remove any edge minimum degree drops)
 Future directions:

Notice:

 $\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$

Sufficient $(K_{\delta,n-\delta})$: hom $(K_{\delta,\delta},H)^{\frac{1}{2\delta}} < \Delta_H$ & hom $(K_{\delta+1},H)^{\frac{1}{\delta+1}} < \Delta_H$?

- $\delta = 3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs ($\delta \ge 3$)?
- Results for G = n-vertex graphs with min degree δ, max degree at most Δ?

Thanks

Thank you!

John Engbers (Notre Dame)

æ

イロト イヨト イヨト イヨト