Extremal questions for H-colorings

John Engbers

Department of Mathematics
University of Notre Dame

Graph Theory Seminar — Western Michigan University, Kalamazoo, MI

November 14, 2012
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$G :$

\[\begin{array}{c}
\text{Graph G}
\end{array} \]

\[\begin{array}{c}
\text{Graph H}
\end{array} \]

$H = H_{\text{ind}} :$

\[\begin{array}{c}
\text{Induced graph H}
\end{array} \]
H-colorings

Graph homomorphism (**H-coloring**): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

- **Examples:** independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

Terminology: map/color the vertices of G; H is a 'blueprint'; it encodes the coloring scheme; natural for H to have loops
Graph homomorphism (**H-coloring**): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets,
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings,
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, bipartite,
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, bipartite, components,
H-colorings

Graph homomorphism (H**-coloring):** A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson
H-colorings

Graph homomorphism (\textit{H-coloring}): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

\begin{figure}
 \begin{center}
 \begin{tikzpicture}
 \node[fill=black!20, circle] (A) at (0,0) {};
 \node[fill=blue, circle] (B) at (1,1) {};
 \node[fill=red, circle] (C) at (1,-1) {};
 \node[fill=black!20, circle] (D) at (2,0) {};
 \draw (A) -- (B);
 \draw (A) -- (C);
 \draw (A) -- (D);
 \draw (B) -- (D);
 \draw (C) -- (D);
 \node[fill=black!20, circle] (E) at (5,0) {};
 \node[fill=blue, circle] (F) at (6,1) {};
 \node[fill=red, circle] (G) at (6,-1) {};
 \draw (E) -- (F);
 \draw (E) -- (G);
 \end{tikzpicture}
 \end{center}
\end{figure}

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- **Terminology:** map/color the vertices of G
- **H** is a ‘blueprint’; it encodes the coloring scheme
H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- H is a ‘blueprint’; it encodes the coloring scheme
- Natural for H to have loops
Notation and conventions

Notations:

Hom\((G, H)\) = \{\text{\(H\)-colorings of \(G\)}\}

\text{Note:} \hom\((G, H) \comp \) = 2

\text{# components of } G

\hom\((G, K_2)\) = 1

\text{# bipartite components of } G

\text{John Engbers (Notre Dame)}

\text{Extremal } H\text{-colorings}

November 2012

3 / 18
Notation and conventions

Notations:

$$\text{Hom}(G, H) = \{H\text{-colorings of } G\}$$

$$\text{hom}(G, H) = |\text{Hom}(G, H)|$$
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{ H\text{-colorings of } G \} \]

\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]
Notation and conventions

Notations:

\[
\text{Hom}(G, H) = \{ H\text{-colorings of } G \}
\]

\[
\text{hom}(G, H) = |\text{Hom}(G, H)|
\]
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{ \text{H-colorings of } G \} \]
\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{H\text{-colorings of } G\} \]
\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]

Note:

\[\text{hom}(G, H_{\text{comp}}) = 2^\# \text{ components of } G \]
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{H\text{-colorings of } G\} \]
\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]

Note:

\[\text{hom}(G, H_{\text{comp}}) = 2^\# \text{ components of } G \]
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{ H\text{-colorings of } G \} \]
\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]

Note:

\[\text{hom}(G, H_{\text{comp}}) = 2^{\# \text{ components of } G} \]
Notation and conventions

Notations:

\[\text{Hom}(G, H) = \{ \text{H-colorings of } G \} \]
\[\text{hom}(G, H) = |\text{Hom}(G, H)| \]

Note:

- \(\text{hom}(G, H_{\text{comp}}) = 2^\# \text{ components of } G \)
- \(\text{hom}(G, K_2) = 1_{\{ G \text{ bipartite} \}} 2^\# \text{ bipartite components of } G \)
Notation and conventions

Also: $d(v)$ is the degree of v (where loops count \textit{once})

Why?
Notation and conventions

Also: \(d(v) \) is the degree of \(v \) (where loops count \textit{once})

Why?

\[G : \]

\[w \]

\[H = H_{\text{ind}} : \]
Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$G:$

w is red

$H = H_{\text{ind}}:$
Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

G:

$H = H_{\text{ind}}$:

- w is red \implies each neighbor of w has 1 choice ($d(\text{red}) = 1$)
Notation and conventions

Also: \(d(v) \) is the degree of \(v \) (where loops count once)

Why?

\[G : \]

\[w \]

\[H = H_{\text{ind}} : \]

\[H \]

- \(w \) is red \(\implies \) each neighbor of \(w \) has 1 choice (\(d(\text{red}) = 1 \))
- \(w \) is gray
Notation and conventions

Also: \(d(v) \) is the degree of \(v \) (where loops count once)

Why?

\[G : \]

- \(w \) is red \(\implies \) each neighbor of \(w \) has 1 choice \((d(\text{red}) = 1) \)
- \(w \) is gray \(\implies \) each neighbor of \(w \) has 2 choices \((d(\text{gray}) = 2) \)

\[H = H_{\text{ind}} : \]

\[H_{\text{ind}} : \]
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G)$ = particles, $E(G)$ = adjacency (e.g. spatial proximity)
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G) = \text{particles}$, $E(G) = \text{adjacency (e.g. spatial proximity)}$

Place spins on those particles so that adjacent particles receive ‘compatible’ spins
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G) =$ particles, $E(G) =$ adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive ‘compatible’ spins

\[G : \]

\[\text{Spins:} \]

\[\text{Spins = colors; a spin configuration is an } H\text{-coloring} \]

Can put weights on the spins

This idea generalizes to putting objects (with relationships) into classes with hard rules
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G) = \text{particles}$, $E(G) = \text{adjacency (e.g. spatial proximity)}$

Place spins on those particles so that adjacent particles receive ‘compatible’ spins

\[G : \]
\[\text{Spins:} \]

- Spins $= \text{colors}$; a spin configuration is an H-coloring
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G) =$ particles, $E(G) =$ adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive ‘compatible’ spins

- Spins = colors; a spin configuration is an H-coloring
- Can put weights on the spins
Statistical physics interpretation

Hard constraint spin systems:

Imagine $V(G) =$ particles, $E(G) =$ adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive ‘compatible’ spins

- Spins = colors; a spin configuration is an H-coloring
- Can put weights on the spins
- This idea generalizes to putting objects (with relationships) into classes with hard rules
Questions to ask
Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard]
Questions to ask

Existential
- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic
- Can we easily produce an H-coloring of G?
- Can we obtain a (uniform) random H-coloring of G?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?
Questions to ask

Existential
- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic
- Can we easily produce an H-coloring of G?
- Can we obtain a (uniform) random H-coloring of G?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural
- e.g. What does the typical H-coloring of G look like?
Questions to ask

Existential
- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic
- Can we easily produce an H-coloring of G?
- Can we obtain a (uniform) random H-coloring of G?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural
- e.g. What does the typical H-coloring of G look like?

Enumerative
- What is $\text{hom}(G, H)$? [hard]
Questions to ask

Existential
- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic
- Can we easily produce an H-coloring of G?
- Can we obtain a (uniform) random H-coloring of G?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural
- e.g. What does the typical H-coloring of G look like?

Enumerative
- What is $\text{hom}(G, H)$? [hard]

Extremal
- Rest of this talk...
An extremal question

Question

Fix H. Given a family of graphs G, which $G \in G$ maximizes $\text{hom}(G, H)$?

$H = H_{\text{ind}}$:

![Graph Diagram]

Remarks:

Pick G and H. Often: Consider H (e.g. H_{ind}), answer for G_1, then G_2, ...

Perspective switch: Consider G, answer for H_1, then H_2, ...

Hope: A small list of graphs G maximize $\text{hom}(G, H)$ for every H.
An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

$$H = H_{\text{ind}} :$$

Remarks:

- Pick G and H
An extremal question

Question

Fix H. Given a family of graphs G, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Remark:
- Pick G and H
- Often: Consider H (e.g. H_{Ind}), answer for G_1, then G_2, ...

$$H = H_{\text{ind}} :$$

\begin{center}
\begin{tikzpicture}
\node[red] (A) at (0,0) {};
\node[black!50] (B) at (1,0) {};
\draw (A) -- (B);
\end{tikzpicture}
\end{center}
An extremal question

Question

Fix H. Given a family of graphs G, which $G \in G$ maximizes $\text{hom}(G, H)$?

Remarks:

- Pick G and H
- Often: Consider H (e.g. H_{ind}), answer for G_1, then G_2, ...
- Perspective switch: Consider G, answer for H_1, then H_2, ...

$H = H_{\text{ind}}$:
An extremal question

Question

Fix H. Given a family of graphs G, which $G \in G$ maximizes $\text{hom}(G, H)$?

Remarks:

- Pick G and H
- Often: Consider H (e.g. H_{ind}), answer for G_1, then G_2, ...
- Perspective switch: Consider G, answer for H_1, then H_2, ...
- Hope: A small list of graphs G maximize $\text{hom}(G, H)$ for every H.
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex graphs
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} =$ n-vertex graphs
 - For any H, $\text{hom}(G, H)$ is maximized when $G =$
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex graphs
 - For any H, $\text{hom}(G, H)$ is maximized when $G = E_n$

\[E_n : \quad \circ \quad \circ \]

\[\circ \quad \circ \quad \circ \]

\[\circ \quad \circ \]

\[\text{hom}(E_n, H) = |V(H)|^n \]
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex graphs
 - For any H, $\text{hom}(G, H)$ is maximized when $G = E_n$

 $E_n : \quad \bigcirc \quad \bigcirc$

 \[\bigcirc \quad \bigcirc \quad \bigcirc \]

 $\text{hom}(E_n, H) = |V(H)|^n$

- Interesting families force each graph G to have a large number of edges.
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex m-edge graphs
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex m-edge graphs
 - $H = H_{\text{ind}}$

$\begin{align*}
\text{Lex}(8, 11) & \quad \text{Colex}(8, 11) \\
\end{align*}$

Extremal graphs can be non-homogeneous

John Engbers (Notre Dame) Extremal H-colorings November 2012 9 / 18
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex m-edge graphs
 - $H = H_{\text{ind}}$, $H = H_{\text{WR}}$, class of H (Cutler-Radcliffe)

\[\begin{array}{c}
6 & 5 \\
7 & 4 \\
8 & 3 \\
\end{array} \quad \begin{array}{c}
6 & 5 \\
7 & 4 \\
8 & 3 \\
\end{array}\]

- \text{Lex}(8, 11)
- \text{Colex}(8, 11)
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex m-edge graphs
 - $H = H_{\text{ind}}, H = H_{\text{WR}}$, class of H (Cutler-Radcliffe)

 $\begin{array}{c}
 6 & 5 \\
 7 & 4 \\
 8 & 3 \\
 1 & 2 \\
 \end{array}$

 $\begin{array}{c}
 6 & 5 \\
 7 & 4 \\
 8 & 3 \\
 1 & 2 \\
 \end{array}$

 Lex$(8, 11)$

 $\begin{array}{c}
 6 & 5 \\
 7 & 4 \\
 8 & 3 \\
 1 & 2 \\
 \end{array}$

 Colex$(8, 11)$

 $H = K_q$: various results, still open in general
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex m-edge graphs
 - $H = H_{\text{ind}}$, $H = H_{\text{WR}}$, class of H (Cutler-Radcliffe)

\[
\begin{align*}
\text{Lex}(8, 11) & \quad \text{Colex}(8, 11)
\end{align*}
\]

- $H = K_q$: various results, still open in general

Extremal graphs can be non-homogeneous
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn)

$$\frac{n}{2d}K_{d,d} : \quad \text{...}$$
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn), generalized to all(!) H (Galvin-Tetali)

$$\frac{n}{2d}K_{d,d} : \quad \begin{array}{ccc}
 \cdots
\end{array}$$
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn), generalized to all (!!!) H (Galvin-Tetali)

 $\frac{n}{2d}K_{d,d}$:

 ![Diagram](image)

- $\mathcal{G} = n$-vertex d-regular graphs
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn), generalized to all(!) H (Galvin-Tetali)

 $\frac{n}{2d} K_{d,d}$:

- $\mathcal{G} = n$-vertex d-regular graphs
 - H_{ind} (Zhao)

Open Conjecture

Fix H. For $G = n$-vertex d-regular graphs, $\text{hom}(G, H)$ is maximized when $G = n^2 K_{d,d}$, d or $n^2 d + 1 K_{d+1}$.

John Engbers (Notre Dame) Extremal H-colorings November 2012 10 / 18
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn), generalized to *all* H (Galvin-Tetali)
 - $\frac{n}{2d} K_{d,d}$:

- $\mathcal{G} = n$-vertex d-regular graphs
 - H_{ind} (Zhao), class of H (Zhao, Galvin)
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

- $\mathcal{G} = n$-vertex d-regular bipartite graphs
 - $H = H_{\text{ind}}$ (Kahn), generalized to all(!) H (Galvin-Tetali)
 \[
 \frac{n}{2d} K_{d,d} : \quad \cdots
 \]

- $\mathcal{G} = n$-vertex d-regular graphs
 - H_{ind} (Zhao), class of H (Zhao, Galvin)
 \[
 \cdots \quad \cdots
 \]

Open Conjecture

Fix H. For $\mathcal{G} = n$-vertex d-regular graphs, $\text{hom}(G, H)$ is maximized when $G = \frac{n}{2d} K_{d,d}$ or $\frac{n}{d+1} K_{d+1}$.

Today’s family

\[\mathcal{G} = \mathcal{G}(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today’s Question

Fix \(H \). Which \(G \in \mathcal{G}(n, \delta) \) maximizes \(\text{hom}(G, H) \)?
Today’s family

\[\mathcal{G} = \mathcal{G}(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today’s Question

Fix \(H \). Which \(G \in \mathcal{G}(n, \delta) \) maximizes \(\text{hom}(G, H) \)?

Intuition: Maximizing graph is \(\delta \)-regular (so likely either \(\frac{n}{2\delta} K_{\delta, \delta} \) or \(\frac{n}{\delta + 1} K_{\delta + 1} \)).
Today’s family

\[\mathcal{G} = \mathcal{G}(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today’s Question

Fix \(H \). Which \(G \in \mathcal{G}(n, \delta) \) maximizes \(\text{hom}(G, H) \)?

Intuition: Maximizing graph is \(\delta \)-regular (so likely either \(\frac{n}{2\delta} K_{\delta, \delta} \) or \(\frac{n}{\delta + 1} K_{\delta + 1} \)). FALSE!
Today's family

\[G = G(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today's Question

Fix \(H \). Which \(G \in G(n, \delta) \) maximizes \(\text{hom}(G, H) \)?

Intuition: Maximizing graph is \(\delta \)-regular (so likely either \(\frac{n}{2\delta} K_{\delta, \delta} \) or \(\frac{n}{\delta+1} K_{\delta+1} \)). FALSE!

Theorem (Galvin, 2011)

For all \(G \in G(n, \delta) \) and \(n \geq 8\delta^2 \), \(\text{hom}(G, H_{\text{ind}}) \) is maximized when \(G = K_{\delta, n-\delta} \).
Today’s family

\[G = G(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today’s Question

Fix \(H \). Which \(G \in G(n, \delta) \) maximizes hom\((G, H)\) ?

Intuition: Maximizing graph is \(\delta \)-regular (so likely either \(\frac{n}{2\delta} K_{\delta,\delta} \) or \(\frac{n}{\delta+1} K_{\delta+1} \)). FALSE!

Theorem (Galvin, 2011)

For all \(G \in G(n, \delta) \) and \(n \geq 8\delta^2 \), hom\((G, H_{\text{ind}})\) is maximized when \(G = K_{\delta,n-\delta} \).
Today’s family

\[\mathcal{G} = \mathcal{G}(n, \delta) = n\text{-vertex graphs with minimum degree } \delta \]

Today’s Question

Fix \(H \). Which \(G \in \mathcal{G}(n, \delta) \) maximizes \(\text{hom}(G, H) \)?

Intuition: Maximizing graph is \(\delta \)-regular (so likely either \(\frac{n}{2\delta} K_{\delta, \delta} \) or \(\frac{n}{\delta+1} K_{\delta+1} \)). FALSE!

Theorem (Galvin, 2011)

For all \(G \in \mathcal{G}(n, \delta) \) and \(n \geq 8\delta^2 \), \(\text{hom}(G, H_{\text{ind}}) \) is maximized when \(G = K_{\delta, n-\delta} \).

Note: \(\text{hom}(K_{\delta, n-\delta}, H_{\text{ind}}) \geq 2^{n-\delta} \).
Today’s family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}, \frac{n}{2\delta}K_{\delta, \delta},$ or $\frac{n}{\delta+1}K_{\delta+1}$.
Today’s family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H = H_{\text{ind}}$ maximized by $K_{\delta, n-\delta}$
Today’s family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$, $\frac{n}{2\delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H = H_{\text{ind}}$ maximized by $K_{\delta, n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta} K_{\delta, \delta}$
Today’s family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\text{hom}(G, H)$ is maximized when $G = K_{\delta,n-\delta, \frac{n}{2\delta} K_{\delta,\delta}, \frac{n}{\delta+1} K_{\delta+1}}$.

Sharpness:

- $H = H_{\text{ind}}$ maximized by $K_{\delta,n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta} K_{\delta,\delta}$
- $H = H_{\text{comp}}$ maximized by $\frac{n}{\delta+1} K_{\delta+1}$

\[\begin{align*}
\text{\includegraphics[width=0.3\textwidth]{graph1}} & \quad \text{\includegraphics[width=0.3\textwidth]{graph2}} & \quad \ldots & \quad \text{\includegraphics[width=0.3\textwidth]{graph3}}
\end{align*}\]
Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\text{hom}(G, H)$ is maximized when $G = K_{\delta,n-\delta}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $\frac{n}{\delta+1}K_{\delta+1}$.

Sharpness:

- $H = H_{\text{ind}}$ maximized by $K_{\delta,n-\delta}$
- $H = K_2$ maximized by $\frac{n}{2\delta}K_{\delta,\delta}$
- $H = H_{\text{comp}}$ maximized by $\frac{n}{\delta+1}K_{\delta+1}$

Emphasis: Infinite collection of H, small # of maximizing graphs
Today’s family

Progress:

\[\text{Theorem (E., 2012)} \]

\[\text{Conjecture is true for } \delta = 1, \delta = 2. \]

Suppose that \(H \) satisfies
\[\sum_{v \in V(H)} d(v) < (\Delta H)^2. \]

Then, for \(n > c \delta \) and \(G \in G(n, \delta) \),
\[\text{hom}(G, H) \text{ is maximized when } G = K_{\delta, n-\delta}. \]

Examples:

\[\text{Hind: } \sum d(v) = 3; (\Delta H)^2 = 4 \]

\[\text{K}_q: \sum d(v) = q(q-1); (\Delta H)^2 = (q-1)^2 \]

\[\text{K}_2: \sum d(v) = 2; (\Delta H)^2 = 1 \]

\[\text{Hcomp: } \sum d(v) = 2; (\Delta H)^2 = 1 \]

\[\text{HWR: } \sum d(v) = 7; (\Delta H)^2 = 9 \]

Any \(\ast H \) with looped dominating vertex is a combination of local \((\Delta H) \) and global \(\sum_{v \in V(H)} d(v) \).
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.

Examples:

- H_{ind}: $\sum d(v) = 3$; $(\Delta H)_2^2 = 4$
- K_q: $\sum d(v) = q(q-1)$; $(\Delta H)_2^2 = (q-1)^2$
- K_2: $\sum d(v) = 2$; $(\Delta H)_2^2 = 1$
- H_{WR}: $\sum d(v) = 7$; $(\Delta H)_2^2 = 9$
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c\delta$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- Ind: $\sum d(v) = 3$; $(\Delta_H)^2 = 4$.
- K_q: $\sum d(v) = q(q-1)$; $(\Delta_H)^2 = (q-1)^2$.
- K_2: $\sum d(v) = 2$; $(\Delta_H)^2 = 1$.
- WR: $\sum d(v) = 7$; $(\Delta_H)^2 = 9$.
Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^{\delta}$ and $G \in G(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- H_{ind}: $\sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2 \times$
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1, \delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^\delta$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}}: \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q: \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2 \times$
- $K_2: \sum d(v) = 2; (\Delta_H)^2 = 1 \times$
Theorem (E., 2012)

- Conjecture is true for $\delta = 1, \delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c\delta$ and $G \in G(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}} : \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q : \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2 \times$
- $K_2 : \sum d(v) = 2; (\Delta_H)^2 = 1 \times$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1 \times$
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1, \delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^\delta$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}} : \sum d(v) = 3; (\Delta_H)^2 = 4 \checkmark$
- $K_q : \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2 \times$
- $K_2 : \sum d(v) = 2; (\Delta_H)^2 = 1 \times$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1 \times$
- $H_{\text{WR}} : \sum d(v) = 7; (\Delta_H)^2 = 9 \checkmark$
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1$, $\delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^\delta$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}} : \sum d(v) = 3; (\Delta_H)^2 = 4$ √
- $K_q : \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2$ ×
- $K_2 : \sum d(v) = 2; (\Delta_H)^2 = 1$ ×
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1$ ×
- $H_{\text{WR}} : \sum d(v) = 7; (\Delta_H)^2 = 9$ √
- Any* H with looped dominating vertex
Today’s family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta = 1, \delta = 2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v) < (\Delta_H)^2$. Then, for $n > c^\delta$ and $G \in \mathcal{G}(n, \delta)$, $\text{hom}(G, H)$ is maximized when $G = K_{\delta, n-\delta}$.

Examples:

- $H_{\text{ind}} : \sum d(v) = 3; (\Delta_H)^2 = 4 \, \checkmark$
- $K_q : \sum d(v) = q(q - 1); (\Delta_H)^2 = (q - 1)^2 \, \times$
- $K_2 : \sum d(v) = 2; (\Delta_H)^2 = 1 \, \times$
- $H_{\text{comp}} : \sum d(v) = 2; (\Delta_H)^2 = 1 \, \times$
- $H_{\text{WR}} : \sum d(v) = 7; (\Delta_H)^2 = 9 \, \checkmark$
- Any* H with looped dominating vertex

Blue condition is combination of local Δ_H and global $\left(\sum_{v \in V(H)} d(v)\right)$.

* Any*
Idea of proof for $H = H_{\text{WR}}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta, n-\delta}$
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta, n-\delta}$
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta, n-\delta}$

Any maximizing graph G has $|M| \leq c\delta$.
Idea of proof for $H = H_{WR}$

Goal: \(\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H) \text{ maximized for } G = K_{\delta, n-\delta} \)

\[
\text{hom}(K_{\delta, n-\delta}, H_{WR}) \geq 3^{n-\delta}
\]
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta, n-\delta}$

\[
\text{hom}(K_{\delta, n-\delta}, H_{WR}) \geq 3^{n-\delta}
\]

Idea: Partition $G(n, \delta)$ by the size of maximum matching M.

\[
K\left\{ \begin{array}{ccccccc}
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
J\end{array} \right\} I
\]
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta,n-\delta}$

$$\text{hom}(K_{\delta,n-\delta}, H_{WR}) \geq 3^{n-\delta}$$

Idea: Partition $G(n, \delta)$ by the size of maximum matching M.

$$\text{hom}(G, H_{WR}) \leq 7|M|3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n$$
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta,n-\delta}$

\[
\text{hom}(K_{\delta,n-\delta}, H_{WR}) \geq 3^{n-\delta}
\]

Idea: Partition $G(n, \delta)$ by the size of maximum matching M.

\[
\begin{align*}
K &\overset{\{\}}{\left\{ \begin{array}{c}
\circ \circ \circ \circ \\
\circ \circ \circ \circ \\
\circ \circ \circ \circ
\end{array} \right\}} I \\
J &\overset{\{\}}{\left\{ \begin{array}{c}
\circ \circ \circ \circ \\
\circ \circ \circ \circ \\
\circ \circ \circ \circ
\end{array} \right\}}
\end{align*}
\]

\[
\text{hom}(G, H_{WR}) \leq 7^{|M|} 3^{n-2|M|} = \left(\frac{7}{3^2} \right)^{|M|} 3^n = \left(\frac{\sum d(v)}{(\Delta_H)^2} \right)^{|M|} 3^n
\]
Idea of proof for $H = H_{WR}$

Goal: $\sum_{v \in V(H)} d(v) < (\Delta_H)^2 \implies \text{hom}(G, H)$ maximized for $G = K_{\delta,n-\delta}$

$$\text{hom}(K_{\delta,n-\delta}, H_{WR}) \geq 3^{n-\delta}$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$$\text{hom}(G, H_{WR}) \leq 7|M| 3^{n-2|M|} = \left(\frac{7}{3^2}\right)^{|M|} 3^n = \left(\frac{\sum d(v)}{\Delta_H^2}\right)^{|M|} 3^n$$

Any maximizing graph G has $|M| \leq c\delta$
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

John Engbers (Notre Dame)
Extremal H-colorings
November 2012
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

\[
K\left\{ \begin{array}{c}
\bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\bigcirc & \bigcirc & \bigcirc & \bigcirc
\end{array} \right\} I
\]

\[
J\left\{ \begin{array}{c}
\bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\bigcirc & \bigcirc & \bigcirc & \bigcirc
\end{array} \right\}
\]

John Engbers (Notre Dame) Extremal H-colorings November 2012 15 / 18
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:

- I is an independent set
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.

John Engbers (Notre Dame) Extremal H-colorings November 2012 15 / 18
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I.

John Engbers (Notre Dame) Extremal H-colorings November 2012 15 / 18
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- \implies Most vertices in I have all neighbors in J
Idea of proof for $H = H_{WR}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta,n-\delta}$ maximizes

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

Facts:
- I is an independent set
 - There are at least $\delta(n - 2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- \implies Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n - 2|M|}{\binom{|M|}{\delta}} = \Omega(n)$ neighbors in I.
Idea of proof for $H = H_{WR}$

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{|M|/\delta} = \Omega(n)$ neighbors in I

Then:
Idea of proof for $H = H_{WR}$

Graphs with $\delta + 1 \leq |M| \leq c\delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{(\frac{|M|}{\delta})} = \Omega(n)$ neighbors in I

Then:

- Case 1: All δ vertices get color gray ($\leq \left(\frac{7}{9}\right) 3^{n-\delta}$)

\[K\{ \qquad \qquad \qquad \qquad \qquad \} \setminus \{ \text{gray vertices} \} \]

\[J\{ \text{green vertices} \} \]

\[I \]

\[\text{blue, red, orange vertices} \]

John Engbers (Notre Dame) Extremal H-colorings November 2012 16 / 18
Idea of proof for $H = H_{WR}$

Graphs with $\delta + 1 \leq |M| \leq c\delta$:
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{(|M|/\delta)} = \Omega(n)$ neighbors in I

Then:
- Case 1: All δ vertices get color gray ($\leq (\frac{7}{9}) 3^{n-\delta}$)
- Case 2: At least 1 of δ vertices gets color blue/red ($\leq (\frac{2}{3})^{\Omega(n)} 3^n$)
Idea of proof for \(H = H_{WR} \)

Graphs with \(\delta + 1 \leq |M| \leq c\delta \):

- Some set of \(\delta \) vertices in \(J \) has \(\approx \frac{n-2|M|}{(|M|\delta)} = \Omega(n) \) neighbors in \(I \)

Then:

- **Case 1**: All \(\delta \) vertices get color gray \((\leq \left(\frac{7}{9}\right) 3^{n-\delta}) \)
- **Case 2**: At least 1 of \(\delta \) vertices gets color blue/red \((\leq \left(\frac{2}{3}\right) \Omega(n) 3^n) \)

And:

\[
\left(\frac{7}{9}\right) 3^{n-\delta} + \left(\frac{2}{3}\right)^{\Omega(n)} 3^n < 3^{n-\delta} \leq \text{hom}(K_{\delta,n-\delta}, H_{WR})
\]
Concluding remarks

Result for $\delta = 1, 2$:

- Analyze structural properties of *edge-critical* graphs G (remove any edge \implies minimum degree drops)
Concluding remarks

Result for $\delta = 1, 2$:
- Analyze structural properties of *edge-critical* graphs G (remove any edge \implies minimum degree drops)

Future directions:
- Notice:

$$H : \begin{array}{c}
\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \\
\text{Maximized in } G(n, 2) \text{ by } K_{2,n-2}
\end{array}$$
Concluding remarks

Result for $\delta = 1, 2$:
- Analyze structural properties of edge-critical graphs G (remove any edge \implies minimum degree drops)

Future directions:
- Notice:

$$H: \begin{array}{c}
\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \\
\text{Maximized in } G(n, 2) \text{ by } K_{2,n-2}
\end{array}$$

Sufficient ($K_{\delta, n-\delta}$): $\text{hom}(K_{\delta, \delta}, H)^{\frac{1}{2\delta}} < \Delta_H$ & $\text{hom}(K_{\delta+1}, H)^{\frac{1}{\delta+1}} < \Delta_H$?
Concluding remarks

Result for \(\delta = 1, 2 \):
- Analyze structural properties of *edge-critical* graphs \(G \) (remove any edge \(\Rightarrow \) minimum degree drops)

Future directions:
- Notice:

\[
H : \begin{array}{c}
\circ & \circ & \circ \\
\circ & \end{array}
\]

\[\sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad \text{Maximized in} \ G(n, 2) \text{ by} \ K_{2,n-2}\]

Sufficient \((K_{\delta,n-\delta})\): \(\text{hom}(K_{\delta,\delta}, H)^{1/2\delta} < \Delta_H \) & \(\text{hom}(K_{\delta+1,\delta}, H)^{1/\delta+1} < \Delta_H\)?

- \(\delta = 3\) ? Other small values of \(\delta\)?
Concluding remarks

Result for $\delta = 1, 2$:
- Analyze structural properties of *edge-critical* graphs G (remove any edge \implies minimum degree drops)

Future directions:
- Notice:

$$H: \quad \sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } G(n, 2) \text{ by } K_{2,n-2}$$

Sufficient ($K_{\delta,n-\delta}$): $\text{hom}(K_{\delta,\delta}, H)^{\frac{1}{2\delta}} < \Delta_H$ & $\text{hom}(K_{\delta+1, H})^{\frac{1}{\delta+1}} < \Delta_H$?

$\delta = 3$? Other small values of δ?
- Meaningful structural properties of edge-critical graphs ($\delta \geq 3$)?
Concluding remarks

Result for $\delta = 1, 2$:
- Analyze structural properties of *edge-critical* graphs G (remove any edge \implies minimum degree drops)

Future directions:
- Notice:

$$H : \quad \sum_{v \in V(H)} d(v) = 5; (\Delta_H)^2 = 4 \quad | \quad \text{Maximized in } \mathcal{G}(n, 2) \text{ by } K_{2,n-2}$$

Sufficient $(K_{\delta,n-\delta})$: $\text{hom}(K_{\delta,\delta}, H)^{\frac{1}{2\delta}} < \Delta_H$ & $\text{hom}(K_{\delta+1}, H)^{\frac{1}{\delta+1}} < \Delta_H$?

- $\delta = 3$? Other small values of δ?
- Meaningful structural properties of edge-critical graphs $(\delta \geq 3)$?
- Results for $\mathcal{G} = n$-vertex graphs with min degree δ, max degree at most Δ?
Thanks

Thank you!