

Extremal questions for H-colorings

John Engbers

Department of Mathematics
University of Notre Dame
Graph Theory Seminar - Western Michigan University, Kalamazoo, MI

November 14, 2012

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

G:

$$
H=H_{\text {ind }}:
$$

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

G:

$$
H=H_{\text {ind }}:
$$

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

G:

$$
H=H_{\text {ind }}:
$$

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\text {ind }}:
$$

Examples: independent sets,

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=K_{q}:
$$

Examples: independent sets, proper q-colorings,

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=K_{2}:
$$

Examples: independent sets, proper q-colorings, bipartite,

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{comp}}:
$$

Examples: independent sets, proper q-colorings, bipartite, components,

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- H is a 'blueprint'; it encodes the coloring scheme

H-colorings

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

G:

$$
H=H_{\mathrm{WR}}:
$$

Examples: independent sets, proper q-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- H is a 'blueprint'; it encodes the coloring scheme
- Natural for H to have loops

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$
$\operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|$

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$
$\operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|$

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$
$\operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|$

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$
$\operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|$

Notation and conventions

Notations:

$$
\begin{aligned}
& \operatorname{Hom}(G, H)=\{H \text {-colorings of } G\} \\
& \operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|
\end{aligned}
$$

Note:

- $\operatorname{hom}\left(G, H_{\text {comp }}\right)=2^{\# \text { components of } G}$

Notation and conventions

Notations:

$$
\begin{aligned}
& \operatorname{Hom}(G, H)=\{H \text {-colorings of } G\} \\
& \operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|
\end{aligned}
$$

Note:

- Mom $\left(G, H_{\text {comp }}\right)=2^{\# \text { components of } G}$

Notation and conventions

Notations:

$$
\begin{aligned}
& \operatorname{Hom}(G, H)=\{H \text {-colorings of } G\} \\
& \operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|
\end{aligned}
$$

Note:

- hom $\left(G, H_{\text {comp }}\right)=2^{\# \text { components of } G}$

Notation and conventions

Notations:

$\operatorname{Hom}(G, H)=\{H$-colorings of $G\}$
$\operatorname{hom}(G, H)=|\operatorname{Hom}(G, H)|$

Note:

- hom $\left(G, H_{\text {comp }}\right)=2^{\# \text { components of } G}$
- $\operatorname{hom}\left(G, K_{2}\right)=\mathbf{1}_{\{G \text { bipartite }\}} 2^{\# \text { bipartite components of } G}$

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$$
H=H_{\text {ind }}:
$$

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$$
H=H_{\text {ind }}:
$$

- w is red

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$$
H=H_{\text {ind }}:
$$

- w is red \Longrightarrow each neighbor of w has 1 choice $(d(\mathrm{red})=1)$

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$$
H=H_{\text {ind }}:
$$

- w is red \Longrightarrow each neighbor of w has 1 choice $(d(\mathrm{red})=1)$
- w is gray

Notation and conventions

Also: $d(v)$ is the degree of v (where loops count once)

Why?

$$
H=H_{\text {ind }}:
$$

- w is red \Longrightarrow each neighbor of w has 1 choice $(d(r e d)=1)$
- w is gray \Longrightarrow each neighbor of w has 2 choices $(d($ gray $)=2)$

Statistical physics interpretation Hard constraint spin systems:

Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
G :

Statistical physics interpretation Hard constraint spin systems:

Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
Place spins on those particles so that adjacent particles receive ‘compatible' spins
G :

Statistical physics interpretation Hard constraint spin systems:

Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
Place spins on those particles so that adjacent particles receive ‘compatible' spins

G:

Spins:

Statistical physics interpretation Hard constraint spin systems:

Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
Place spins on those particles so that adjacent particles receive 'compatible' spins

Spins:

- Spins = colors; a spin configuration is an H -coloring

Statistical physics interpretation Hard constraint spin systems:

Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
Place spins on those particles so that adjacent particles receive 'compatible' spins
G :

Spins:

- Spins = colors; a spin configuration is an H -coloring
- Can put weights on the spins

Statistical physics interpretation

 Hard constraint spin systems:Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
Place spins on those particles so that adjacent particles receive 'compatible' spins
G :

Spins:

- Spins = colors; a spin configuration is an H -coloring
- Can put weights on the spins
- This idea generalizes to putting objects (with relationships) into classes with hard rules

Questions to ask

Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard]

Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an H-coloring of G ?
- Can we obtain a (uniform) random H-coloring of G ?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an H-coloring of G ?
- Can we obtain a (uniform) random H-coloring of G ?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural

- e.g. What does the typical H-coloring of G look like?

Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard]

Algorithmic

- Can we easily produce an H-coloring of G ?
- Can we obtain a (uniform) random H-coloring of G ?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural

- e.g. What does the typical H-coloring of G look like?

Enumerative

- What is $\operatorname{hom}(G, H)$? [hard]

Questions to ask

Existential

- Given a G and H, does an H-coloring of G exist? [hard] Algorithmic
- Can we easily produce an H-coloring of G ?
- Can we obtain a (uniform) random H-coloring of G ?
- Can we quickly move from one H-coloring of G to another via random local updating algorithms?

Structural

- e.g. What does the typical H-coloring of G look like?

Enumerative

- What is $\operatorname{hom}(G, H)$? [hard]

Extremal

- Rest of this talk...

An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

$$
H=H_{\text {ind }}:
$$

An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

$$
H=H_{\text {ind }}:
$$

Remarks:

- Pick \mathcal{G} and H

An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

$$
H=H_{\text {ind }}:
$$

Remarks:

- Pick \mathcal{G} and H
- Often: Consider H (e.g. $H_{\text {ind }}$), answer for \mathcal{G}_{1}, then \mathcal{G}_{2}, \ldots

An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

$$
H=H_{\text {ind }}:
$$

Remarks:

- Pick \mathcal{G} and H
- Often: Consider H (e.g. $H_{\text {ind }}$), answer for \mathcal{G}_{1}, then \mathcal{G}_{2}, \ldots
- Perspective switch: Consider \mathcal{G}, answer for H_{1}, then H_{2}, \ldots

An extremal question

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

$$
H=H_{\text {ind }}:
$$

Remarks:

- Pick \mathcal{G} and H
- Often: Consider H (e.g. $H_{\text {ind }}$), answer for \mathcal{G}_{1}, then \mathcal{G}_{2}, \ldots
- Perspective switch: Consider \mathcal{G}, answer for H_{1}, then H_{2}, \ldots
- Hope: A small list of graphs G maximize hom (G, H) for every H.

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex graphs
- For any H, $\operatorname{hom}(G, H)$ is maximized when $G=$

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex graphs
- For any H, $\operatorname{hom}(G, H)$ is maximized when $G=E_{n}$

$$
\begin{gathered}
E_{n}: \bigcirc \\
\bigcirc \\
\operatorname{hom}\left(E_{n}, H\right)=|V(H)|^{n}
\end{gathered}
$$

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex graphs
- For any H, $\operatorname{hom}(G, H)$ is maximized when $G=E_{n}$

$$
\operatorname{hom}\left(E_{n}, H\right)=|V(H)|^{n}
$$

- Interesting families force each graph G to have a large number of edges.

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex m-edge graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}$

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}, H=H_{\text {WR }}$, class of H (Cutler-Radcliffe)

Lex $(8,11)$

Colex (8, 11)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}, H=H_{\text {WR }}$, class of H (Cutler-Radcliffe)

Lex $(8,11)$

Colex(8,11)

- $H=K_{q}$: various results, still open in general

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex m-edge graphs
- $H=H_{\text {ind }}, H=H_{\text {WR }}$, class of H (Cutler-Radcliffe)

Lex $(8,11)$

Colex (8, 11)

- $H=K_{q}$: various results, still open in general
- Extremal graphs can be non-homogeneous

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn)

$$
\frac{n}{2 d} K_{d, d}:
$$

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes hom (G, H) ?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs
- $H_{\text {ind }}$ (Zhao)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs
- $H_{\text {ind }}$ (Zhao), class of H (Zhao, Galvin)

Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\operatorname{hom}(G, H)$?

- $\mathcal{G}=n$-vertex d-regular bipartite graphs
- $H=H_{\text {ind }}$ (Kahn), generalized to all(!!!) H (Galvin-Tetali)

- $\mathcal{G}=n$-vertex d-regular graphs
- $H_{\text {ind }}$ (Zhao), class of H (Zhao, Galvin)

Open Conjecture

Fix H. For $\mathcal{G}=n$-vertex d-regular graphs, hom (G, H) is maximized when $G=\frac{n}{2 d} K_{d, d}$ or $\frac{n}{d+1} K_{d+1}$.

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes hom (G, H) ?

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Intuition: Maximizing graph is δ-regular (so likely either $\frac{n}{2 \delta} K_{\delta, \delta}$ or $\left.\frac{n}{\delta+1} K_{\delta+1}\right)$.

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Intuition: Maximizing graph is δ-regular (so likely either $\frac{n}{2 \delta} K_{\delta, \delta}$ or $\left.\frac{n}{\delta+1} K_{\delta+1}\right)$. FALSE!

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Intuition: Maximizing graph is δ-regular (so likely either $\frac{n}{2 \delta} K_{\delta, \delta}$ or $\left.\frac{n}{\delta+1} K_{\delta+1}\right)$. FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom ($G, H_{\text {ind }}$) is maximized when $G=K_{\delta, n-\delta}$.

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Intuition: Maximizing graph is δ-regular (so likely either $\frac{n}{2 \delta} K_{\delta, \delta}$ or $\left.\frac{n}{\delta+1} K_{\delta+1}\right)$. FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom ($G, H_{\text {ind }}$) is maximized when $G=K_{\delta, n-\delta}$.

Today's family

$$
\mathcal{G}=\mathcal{G}(n, \delta)=n \text {-vertex graphs with minimum degree } \delta
$$

Today's Question

Fix H. Which $G \in \mathcal{G}(n, \delta)$ maximizes $\operatorname{hom}(G, H)$?
Intuition: Maximizing graph is δ-regular (so likely either $\frac{n}{2 \delta} K_{\delta, \delta}$ or $\left.\frac{n}{\delta+1} K_{\delta+1}\right)$. FALSE!

Theorem (Galvin, 2011)

For all $G \in \mathcal{G}(n, \delta)$ and $n \geq 8 \delta^{2}$, hom ($G, H_{\text {ind }}$) is maximized when $G=K_{\delta, n-\delta}$.

Note: $\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\text {ind }}\right) \geq 2^{n-\delta}$.

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, hom (G, H) is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H=H_{\text {ind }}$ maximized by $K_{\delta, n-\delta}$

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, hom (G, H) is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H=H_{\text {ind }}$ maximized by $K_{\delta, n-\delta}$
- $H=K_{2}$ maximized by $\frac{n}{2 \delta} K_{\delta, \delta}$

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, $\operatorname{hom}(G, H)$ is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H=H_{\text {ind }}$ maximized by $K_{\delta, n-\delta}$
- $H=K_{2}$ maximized by $\frac{n}{2 \delta} K_{\delta, \delta}$
- $H=H_{\text {comp }}$ maximized by $\frac{n}{\delta+1} K_{\delta+1}$

Today's family

Conjecture

Fix H. For all $G \in \mathcal{G}(n, \delta)$ and n large enough, hom (G, H) is maximized when $G=K_{\delta, n-\delta}, \frac{n}{2 \delta} K_{\delta, \delta}$, or $\frac{n}{\delta+1} K_{\delta+1}$.

Sharpness:

- $H=H_{\text {ind }}$ maximized by $K_{\delta, n-\delta}$
- $H=K_{2}$ maximized by $\frac{n}{2 \delta} K_{\delta, \delta}$
- $H=H_{\text {comp }}$ maximized by $\frac{n}{\delta+1} K_{\delta+1}$

Emphasis: Infinite collection of H, small \# of maximizing graphs

Today's family

Progress:

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \boldsymbol{X}$

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \mathbf{X}$
- $K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{X}$

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \mathbf{X}$
- $K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{x}$
- $H_{\text {comp }}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \mathbf{X}$

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \mathbf{X}$
- $K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{x}$
- $H_{\text {comp }}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{X}$

- $H_{\mathrm{WR}}: \sum d(v)=7 ;\left(\Delta_{H}\right)^{2}=9 \checkmark$

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \mathbf{X}$
- $K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{x}$
- $H_{\text {comp }}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \mathbf{X}$
- $H_{\mathrm{WR}}: \sum d(v)=7 ;\left(\Delta_{H}\right)^{2}=9 \checkmark$
- Any* H with looped dominating vertex

Today's family

Progress:

Theorem (E., 2012)

- Conjecture is true for $\delta=1, \delta=2$.
- Suppose that H satisfies $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2}$. Then, for $n>c^{\delta}$ and $G \in \mathcal{G}(n, \delta)$, hom (G, H) is maximized when $G=K_{\delta, n-\delta}$.

Examples:

- $H_{\text {ind }}: \sum d(v)=3 ;\left(\Delta_{H}\right)^{2}=4 \checkmark$
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \mathbf{X}$
- $K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{x}$
- $H_{\text {comp }}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{X}$
- $H_{\mathrm{WR}}: \sum d(v)=7 ;\left(\Delta_{H}\right)^{2}=9 \checkmark$

- Any* H with looped dominating vertex

Blue condition is combination of local $\left(\Delta_{H}\right)$ and global $\left(\sum_{v \in V(H)} d(v)\right)$.

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$
Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

○

O $\} I$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$\operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$$
\begin{aligned}
& \operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}=\left(\frac{\sum d(v)}{\left(\Delta_{H}\right)^{2}}\right)^{|M|} 3^{n}
\end{aligned}
$$

Idea of proof for $H=H_{\mathrm{WR}}$

Goal: $\sum_{v \in V(H)} d(v)<\left(\Delta_{H}\right)^{2} \Longrightarrow \operatorname{hom}(G, H)$ maximized for $G=K_{\delta, n-\delta}$

$$
\operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right) \geq 3^{n-\delta}
$$

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of maximum matching M.

$$
\begin{gathered}
K\left\{\bigcirc \bigcirc \bigcirc{ }^{K} \bigcirc \bigcirc \bigcirc 7^{|M|} 3^{n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|} 3^{n}=\left(\frac{\sum d(v)}{\left(\Delta_{H}\right)^{2}}\right)^{|M|} 3^{n}\right.
\end{gathered}
$$

Any maximizing graph G has $|M| \leq c \delta$

Idea of proof for $H=H_{\mathrm{WR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.

Idea of proof for $H=H_{\mathrm{wR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I

Idea of proof for $H=H_{\mathrm{wR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I

Idea of proof for $H=H_{\mathrm{WR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I

Idea of proof for $H=H_{\mathrm{WR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- \Longrightarrow Most vertices in I have all neighbors in J

Idea of proof for $H=H_{\mathrm{WR}}$

Graphs with $|M| \leq \delta$: Short argument gives $K_{\delta, n-\delta}$ maximizes
Graphs with $\delta+1 \leq|M| \leq c \delta$:

Facts:

- I is an independent set
- There are at least $\delta(n-2|M|)$ edges from I to $J \cup K$.
- Both endpoints of edge in M cannot have degree ≥ 2 to I
- Choose K to be vertices with smallest degree to I
- \Longrightarrow Most vertices in I have all neighbors in J
- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I.

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $\delta+1 \leq|M| \leq c \delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I

Then:

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $\delta+1 \leq|M| \leq c \delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M}{\delta}}=\Omega(n)$ neighbors in I

Then:

- Case 1: All δ vertices get color gray $\left(\leq\left(\frac{7}{9}\right) 3^{n-\delta}\right)$

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $\delta+1 \leq|M| \leq c \delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I

Then:

- Case 1: All δ vertices get color gray $\left(\leq\left(\frac{7}{9}\right) 3^{n-\delta}\right)$
- Case 2: At least 1 of δ vertices gets color blue/red $\left(\leq\left(\frac{2}{3}\right)^{\Omega(n)} 3^{n}\right)$

Idea of proof for $H=H_{\mathrm{WR}}$
Graphs with $\delta+1 \leq|M| \leq c \delta$:

- Some set of δ vertices in J has $\approx \frac{n-2|M|}{\binom{M \mid}{\delta}}=\Omega(n)$ neighbors in I

Then:

- Case 1: All δ vertices get color gray $\left(\leq\left(\frac{7}{9}\right) 3^{n-\delta}\right)$
- Case 2: At least 1 of δ vertices gets color blue/red $\left(\leq\left(\frac{2}{3}\right)^{\Omega(n)} 3^{n}\right)$

And:

$$
\left(\frac{7}{9}\right) 3^{n-\delta}+\left(\frac{2}{3}\right)^{\Omega(n)} 3^{n}<3^{n-\delta} \leq \operatorname{hom}\left(K_{\delta, n-\delta}, H_{\mathrm{WR}}\right)
$$

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)
Future directions:
- Notice:

$$
\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad \text { Maximized in } \mathcal{G}(n, 2) \text { by } K_{2, n-2}
$$

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$$
\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad \text { Maximized in } \mathcal{G}(n, 2) \text { by } K_{2, n-2}
$$

Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?
- $\delta=3$? Other small values of δ ?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?
- $\delta=3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs $(\delta \geq 3)$?

Concluding remarks

Result for $\delta=1,2$:

- Analyze structural properties of edge-critical graphs G (remove any edge \Longrightarrow minimum degree drops)

Future directions:

- Notice:

$\sum_{v \in V(H)} d(v)=5 ;\left(\Delta_{H}\right)^{2}=4 \quad \mid \quad$ Maximized in $\mathcal{G}(n, 2)$ by $K_{2, n-2}$
Sufficient $\left(K_{\delta, n-\delta}\right): \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{1}{2 \delta}}<\Delta_{H} \& \operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{1}{\delta+1}}<\Delta_{H}$?
- $\delta=3$? Other small values of δ ?
- Meaningful structural properties of edge-critical graphs $(\delta \geq 3)$?
- Results for $\mathcal{G}=n$-vertex graphs with min degree δ, max degree at most Δ ?

Thanks

Thank you!

