Entropy and Counting

John Engbers

Department of Mathematics University of Notre Dame

Oral Exam, January 2010

Outline

- Definition
- Properties

2 Matchings

- 3 Homomorphisms
- Independent Sets

<ロ> < 部 > < 言 > < 言 > 三日 のQ() 2/74

Definition

The entropy of a discrete random variable X is

$$H(\mathbf{X}) = \sum_{x} p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(\mathbf{X} = x)$.

Definition

The entropy of a discrete random variable X is

$$H(\mathbf{X}) = \sum_{x} p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(\mathbf{X} = x)$.

 Think of entropy as the amount of uncertainty/randomness/surprise in X.

Definition

The entropy of a discrete random variable X is

$$H(\mathbf{X}) = \sum_{x} p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(\mathbf{X} = x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in X.
- For example, if p(x) = 1 for some x, then $H(\mathbf{X}) = 0$.

Definition

The entropy of a discrete random variable X is

$$H(\mathbf{X}) = \sum_{x} p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(\mathbf{X} = x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in X.
- For example, if p(x) = 1 for some x, then $H(\mathbf{X}) = 0$.
- All random variables will be discrete, and log = log₂.

Example

 Let's look at a Bernoulli random variable as a function of the probability p.

Example

 Let's look at a Bernoulli random variable as a function of the probability p.

• If *Q* is an event, we define
$$H(\mathbf{X}|Q) = \sum p(x|Q) \log \frac{1}{p(x|Q)}$$
.

Definition Properties

• If *Q* is an event, we define
$$H(\mathbf{X}|Q) = \sum p(x|Q) \log \frac{1}{p(x|Q)}$$
.

Definition Properties

< □ > < □ > < 豆 > < 豆 > < 豆 > < 巨 > < □ > <

10/74

Definition

The conditional entropy of X given Y is

$$H(\mathbf{X}|\mathbf{Y}) = E[H(\mathbf{X}|\{\mathbf{Y}=y\})] = \sum_{y} p(y) \sum_{x} p(x|y) \log \frac{1}{p(x|y)}$$

• (Chain Rule) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) = H(\mathbf{X}_1) + H(\mathbf{X}_2 | \mathbf{X}_1) + \dots + H(\mathbf{X}_n | \mathbf{X}_{n-1}, \dots, \mathbf{X}_1)$

• (Chain Rule) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) = H(\mathbf{X}_1) + H(\mathbf{X}_2 | \mathbf{X}_1) + \dots + H(\mathbf{X}_n | \mathbf{X}_{n-1}, \dots, \mathbf{X}_1)$ (1)

Definition Properties

• (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x) = 1$ and log is concave), we have

$$H(\mathbf{X}) = \sum_{x} p(x) \log \frac{1}{p(x)} \le \log(\sum_{x} 1) = \log |\mathsf{range}(\mathbf{X})|$$

Definition Properties

Basic Properties

- (Chain Rule) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) = H(\mathbf{X}_1) + H(\mathbf{X}_2 | \mathbf{X}_1) + \dots + H(\mathbf{X}_n | \mathbf{X}_{n-1}, \dots, \mathbf{X}_1)$
- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x) = 1$ and log is concave), we have

$$H(\mathbf{X}) = \sum_{x} p(x) \log \frac{1}{p(x)} \le \log(\sum_{x} 1) = \log|\mathsf{range}(\mathbf{X})|$$

• $H(\mathbf{X}) = \log |\mathsf{range}(\mathbf{X})| \iff \mathbf{X}$ is a uniform random variable

Definition Properties

Basic Properties

- (Chain Rule) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) = H(\mathbf{X}_1) + H(\mathbf{X}_2 | \mathbf{X}_1) + \dots + H(\mathbf{X}_n | \mathbf{X}_{n-1}, \dots, \mathbf{X}_1)$
- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x) = 1$ and log is concave), we have

$$H(\mathbf{X}) = \sum_{x} p(x) \log \frac{1}{p(x)} \le \log(\sum_{x} 1) = \log|\mathsf{range}(\mathbf{X})|$$

• $H(\mathbf{X}) = \log |\text{range}(\mathbf{X})| \iff \mathbf{X} \text{ is a uniform random variable}$ • $H(\mathbf{X}|\mathbf{Y}) \le H(\mathbf{X})$

Definition Properties

Basic Properties

- (Chain Rule) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) = H(\mathbf{X}_1) + H(\mathbf{X}_2 | \mathbf{X}_1) + \dots + H(\mathbf{X}_n | \mathbf{X}_{n-1}, \dots, \mathbf{X}_1)$
- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x) = 1$ and log is concave), we have

$$H(\mathbf{X}) = \sum_{x} p(x) \log \frac{1}{p(x)} \le \log(\sum_{x} 1) = \log|\mathsf{range}(\mathbf{X})|$$

- $H(\mathbf{X}) = \log |\operatorname{range}(\mathbf{X})| \iff \mathbf{X}$ is a uniform random variable • $H(\mathbf{X}|\mathbf{Y}) \le H(\mathbf{X})$
- (Subadditivity) $H(\mathbf{X}_1, \dots, \mathbf{X}_n) \leq \sum H(\mathbf{X}_i)$

A few more useful properties:

A few more useful properties:

• If Y determines Z then $H(X|Y) \le H(X|Z)$

A few more useful properties:

- If Y determines Z then $H(X|Y) \leq H(X|Z)$
- (Conditional Subadditivity) $H(\mathbf{X}_1, \ldots, \mathbf{X}_n | \mathbf{Y}) \leq \sum H(\mathbf{X}_i | \mathbf{Y})$

A few more useful properties:

• If Y determines Z then $H(X|Y) \le H(X|Z)$

• (Conditional Subadditivity) $H(\mathbf{X}_1, \ldots, \mathbf{X}_n | \mathbf{Y}) \leq \sum H(\mathbf{X}_i | \mathbf{Y})$

For a random vector $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ and $A \subset [n] = \{1, 2, \dots, n\}$, let $\mathbf{X}_A := (\mathbf{X}_i : i \in A)$.

A few more useful properties:

- If Y determines Z then $H(X|Y) \le H(X|Z)$
- (Conditional Subadditivity) $H(\mathbf{X}_1, \ldots, \mathbf{X}_n | \mathbf{Y}) \leq \sum H(\mathbf{X}_i | \mathbf{Y})$

For a random vector $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ and $A \subset [n] = \{1, 2, \dots, n\}$, let $\mathbf{X}_A := (\mathbf{X}_i : i \in A)$.

Lemma (Shearer's Lemma)

Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be a random vector and \mathcal{A} a collection of subsets (possibly with repeats) of [n], with each element of [n] contained in at least t members of \mathcal{A} . Then

$$H(\mathbf{X}) \leq \frac{1}{t} \sum_{A \in \mathcal{A}} H(\mathbf{X}_A).$$

Suppose that we have a bipartite, *N*-vertex, *d*-regular graph *G*. How many perfect matchings are there?

Suppose that we have a bipartite, *N*-vertex, *d*-regular graph *G*. How many perfect matchings are there?

Theorem (Brégman)

In a *N*-vertex, *d*-regular bipartite graph *G*, let \mathcal{M} be the set of perfect matchings of *G*. Then

 $|\mathcal{M}| \le (d!)^{N/2d}.$

Theorem (Brégman)

In a *N*-vertex, *d*-regular bipartite graph *G*, let \mathcal{M} be the set of perfect matchings of *G*. Then

 $|\mathcal{M}| \le (d!)^{N/2d}.$

Theorem (Brégman)

In a *N*-vertex, *d*-regular bipartite graph *G*, let \mathcal{M} be the set of perfect matchings of *G*. Then

 $|\mathcal{M}| \le (d!)^{N/2d}.$

Remark 1: This theorem is sharp for the disjoint union of N/2d copies of $K_{d,d}$.

Theorem (Brégman)

In a *N*-vertex, *d*-regular bipartite graph *G*, let \mathcal{M} be the set of perfect matchings of *G*. Then

 $|\mathcal{M}| \le (d!)^{N/2d}.$

Remark 1: This theorem is sharp for the disjoint union of N/2d copies of $K_{d,d}$.

Theorem (Brégman)

In a *N*-vertex, *d*-regular bipartite graph *G*, let \mathcal{M} be the set of perfect matchings of *G*. Then

 $|\mathcal{M}| \le (d!)^{N/2d}.$

Remark 1: This theorem is sharp for the disjoint union of N/2d copies of $K_{d,d}$.

Remark 2: The theorem can be interpreted as a theorem about permanents in $\{0, 1\}$ -matrices. It can also easily be generalized beyond the *d*-regular condition.

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ ; look at

 $\sigma(\tau(1)), \sigma(\tau(2)), \dots, \sigma(\tau(N/2))$ in this order.

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \dots, \sigma(\tau(N/2))$ in this order.

Fix *i*; define $N_i(\sigma, \tau)$ be the neighbors of *i* that are NOT already matched for the given σ and τ .

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \dots, \sigma(\tau(N/2))$ in this order.

Fix *i*; define $N_i(\sigma, \tau)$ be the neighbors of *i* that are NOT already matched for the given σ and τ .

For fixed σ , $P_{\tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$ for $j = 1, \dots, d$.

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \dots, \sigma(\tau(N/2))$ in this order.

Fix *i*; define $N_i(\sigma, \tau)$ be the neighbors of *i* that are NOT already matched for the given σ and τ .

For fixed σ , $P_{\tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$ for $j = 1, \dots, d$. $\implies P_{\sigma, \tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$.

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} H(\sigma(\tau(i)) | \sigma(\tau(1)), \dots, \sigma(\tau(i-1)))$$

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \dots, \sigma(\tau(i-1))) \right]$$

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \dots, \sigma(\tau(i-1))) \right]$$
$$\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_i(\sigma, \tau)| = j) \log j \right]$$
Proof of Brégman's Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \dots, \sigma(\tau(i-1))) \right]$$
$$\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_i(\sigma, \tau)| = j) \log j \right]$$
$$= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) | \sigma(\tau(1)), \dots, \sigma(\tau(i-1))) \right]$$

$$\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_{i}(\sigma, \tau)| = j) \log j \right]$$

$$= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j$$

$$= \sum_{i=1}^{N/2} \frac{1}{d} \log d!$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) | \sigma(\tau(1)), \dots, \sigma(\tau(i-1))) \right]$$

$$\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_{i}(\sigma, \tau)| = j) \log j \right]$$

$$= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j$$

$$= \sum_{i=1}^{N/2} \frac{1}{d} \log d!$$

$$= \log(d!)^{N/2d}$$

Questions

Question: Is this result true if we remove the word 'perfect'?

Conjecture

In an *N*-vertex, *d*-regular bipartite graph *G*, let $\mathcal{M}_{tot}(G)$ be the set of all possible matchings of *G*. Then

$$|\mathcal{M}_{tot}(G)| \leq |\mathcal{M}_{tot}(K_{d,d})|^{N/2d} = \left(\sum_{i=0}^{d} {\binom{d}{i}}^2 i!\right)^{N/2d}$$

Questions

Question: Is this result true if we remove the word 'perfect'?

Conjecture

In an *N*-vertex, *d*-regular bipartite graph *G*, let $\mathcal{M}_{tot}(G)$ be the set of all possible matchings of *G*. Then

$$|\mathcal{M}_{tot}(G)| \le |\mathcal{M}_{tot}(K_{d,d})|^{N/2d} = \left(\sum_{i=0}^d \binom{d}{i}^2 i!\right)^{N/2d}$$

Conjecture (Friedland)

In a *N*-vertex, *d*-regular bipartite graph *G*, let $M_t(G)$ be the set of all matchings of size $t, t \in \{0, 1, ..., N/2\}$ in *G*. Then

$$|\mathcal{M}_t(G)| \leq |\mathcal{M}_t(\frac{N}{2d}K_{d,d})|.$$

Graph Homomorphisms

Definition

Given graphs *G* and *H* (*H* possibly with loops), a function $f: V(G) \rightarrow V(H)$ is a *graph homomorphism* if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by Hom(G, H) the set of all graph homomorphisms from *G* to *H*.

Graph Homomorphisms

Definition

Given graphs *G* and *H* (*H* possibly with loops), a function $f: V(G) \rightarrow V(H)$ is a *graph homomorphism* if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by Hom(G, H) the set of all graph homomorphisms from *G* to *H*.

Example:

G

two H's:

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph *G*.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

This result can be extended to the following:

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

This result can be extended to the following:

Theorem (Galvin, Tetali)

For any *N*-vertex, *d*-regular bipartite graph *G* and any *H* (possibly with loops),

 $|Hom(G,H)| \leq |Hom(K_{d,d},H)|^{N/2d}.$

Choose f uniformly from Hom(G, H), so

 $\log |Hom(G,H)| = H(\mathbf{f})$

Choose f uniformly from Hom(G, H), so

$$\log |Hom(G,H)| = H(\mathbf{f}) = H(\mathbf{f}|_O) + H(\mathbf{f}|_E|\mathbf{f}|_O)$$

Choose f uniformly from Hom(G, H), so

$$\begin{aligned} \log |Hom(G,H)| &= H(\mathbf{f}) \\ &= H(\mathbf{f}|_O) + H(\mathbf{f}|_E |\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{f}|_O) \end{aligned}$$

Choose f uniformly from Hom(G, H), so

$$\begin{aligned} \log |Hom(G,H)| &= H(\mathbf{f}) \\ &= H(\mathbf{f}|_O) + H(\mathbf{f}|_E |\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{N}_\nu) \end{aligned}$$

Choose f uniformly from Hom(G, H), so

$$\begin{aligned} \log |Hom(G,H)| &= H(\mathbf{f}) \\ &= H(\mathbf{f}|_O) + H(\mathbf{f}|_E |\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{N}_\nu) \\ &\leq \frac{1}{d} \sum_{\nu \in E} H(\mathbf{N}_\nu) + \sum_{\nu \in E} H(\mathbf{f}_\nu |\mathbf{N}_\nu) \end{aligned}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 き の Q ペ
51/74

Choose \mathbf{f} uniformly from Hom(G, H), so

$$\begin{aligned} \log |Hom(G,H)| &= H(\mathbf{f}) \\ &= H(\mathbf{f}|_O) + H(\mathbf{f}|_E|\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{N}_{\nu}) \\ &\leq \frac{1}{d} \sum_{\nu \in E} H(\mathbf{N}_{\nu}) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{N}_{\nu}) \\ &= \frac{1}{d} \sum_{\nu \in E} [H(\mathbf{N}_{\nu}) + dH(\mathbf{f}_{\nu}|\mathbf{N}_{\nu})] \end{aligned}$$

log

Proof

Choose \mathbf{f} uniformly from Hom(G, H), so

$$\begin{aligned} Hom(G,H)| &= H(\mathbf{f}) \\ &= H(\mathbf{f}|_O) + H(\mathbf{f}|_E|\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{f}|_O) \\ &\leq H(\mathbf{f}|_O) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{N}_{\nu}) \\ &\leq \frac{1}{d} \sum_{\nu \in E} H(\mathbf{N}_{\nu}) + \sum_{\nu \in E} H(\mathbf{f}_{\nu}|\mathbf{N}_{\nu}) \\ &= \frac{1}{d} \sum_{\nu \in E} [H(\mathbf{N}_{\nu}) + dH(\mathbf{f}_{\nu}|\mathbf{N}_{\nu})] \end{aligned}$$

We've localized!

$$\log |Hom(G,H)| \leq rac{1}{d} \sum_{
u \in E} [H(\mathbf{N}_{
u}) + dH(\mathbf{f}_{
u}|\mathbf{N}_{
u})]$$

$$\log |Hom(G,H)| \leq rac{1}{d} \sum_{
u \in E} [H(\mathbf{N}_
u) + dH(\mathbf{f}_
u|\mathbf{N}_
u)]$$

From the definitions, the uniform bound, and an application of Jensen's formula, we have:

$$H(\mathbf{N}_{v}) + dH(\mathbf{f}_{v}|\mathbf{N}_{v}) \le \log |Hom(K_{d,d},H)|$$

which completes the proof.

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

<ロ> < 部 > < 言 > < 言 > 三日 のQ(の 56/74

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

Conjecture

For any *N*-vertex, *d*-regular graph *G* and any *H* (possibly with loops),

 $|Hom(G,H)| \leq |Hom(K_{d,d},H)|^{N/2d}$

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

Conjecture

For any *N*-vertex, *d*-regular graph *G* and any *H* (possibly with loops),

 $|Hom(G,H)| \leq |Hom(K_{d,d},H)|^{N/2d}$

This conjecture is FALSE! See *H* being two disjoint loops and $G = K_3$.

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

 $|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$

Conjecture

For any *N*-vertex, *d*-regular graph *G* and any *H* (possibly with loops),

 $|Hom(G,H)| \leq |Hom(K_{d,d},H)|^{N/2d}$

This conjecture is FALSE! See *H* being two disjoint loops and $G = K_3$.

An interesting question is: For what *H*'s does this extension to general *d*-regular graphs hold?

We now put a probability distribution on the set of all independent sets of G.

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph *G* and $\lambda > 0$, the *hard-core distribution* with *activity* λ on $\mathcal{I}(G)$ is given by

$$p_{\lambda}(I) = rac{\lambda^{|I|}}{\sum \{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}} \quad \text{ for } I \in \mathcal{I}(G).$$

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph *G* and $\lambda > 0$, the *hard-core distribution* with *activity* λ on $\mathcal{I}(G)$ is given by

$$p_{\lambda}(I) = rac{\lambda^{|I|}}{\sum \{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}} \quad \text{ for } I \in \mathcal{I}(G).$$

• Note: $\lambda = 1$ gives the uniform distribution on $\mathcal{I}(G)$.

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph *G* and $\lambda > 0$, the *hard-core distribution* with *activity* λ on $\mathcal{I}(G)$ is given by

$$p_{\lambda}(I) = rac{\lambda^{|I|}}{\sum \{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}} \quad \text{ for } I \in \mathcal{I}(G).$$

- Note: $\lambda = 1$ gives the uniform distribution on $\mathcal{I}(G)$.
- We'll restrict our G to be N-vertex, d-regular, and bipartite.

Now, how do you get a lot of independent sets in G?

Now, how do you get a lot of independent sets in G?

• Let
$$\alpha_{\lambda} = \frac{\lambda}{2(1+\lambda)}$$
.

Now, how do you get a lot of independent sets in G?

• Let
$$\alpha_{\lambda} = \frac{\lambda}{2(1+\lambda)}$$
.

• if **I** is an independent set chosen according to p_{λ} , let $p(v) := P(v \in \mathbf{I})$, and $\bar{p} = \sum_{v} p(v) \ (= E[|\mathbf{I}|]/N)$.

Theorem

Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_{λ} on *G*. Then

 $\bar{p} \approx \alpha_{\lambda}$

and, furthermore, most independent sets have size close to $\alpha_{\lambda}N$.

Theorem

Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_{λ} on *G*. Then

 $\bar{p} \approx \alpha_{\lambda}$

and, furthermore, most independent sets have size close to $\alpha_{\lambda}N$.

• Example: $\lambda = 1$ is the uniform case, where $\alpha_{\lambda} = 1/4$.

・・・・
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・<

Theorem

Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_{λ} on *G*. Then

 $\bar{p} \approx \alpha_{\lambda}$

and, furthermore, most independent sets have size close to $\alpha_{\lambda}N$.

- Example: $\lambda = 1$ is the uniform case, where $\alpha_{\lambda} = 1/4$.
- Entropy allows us to count independent sets of a fixed size.

Extension

Theorem (E., Galvin)

Given any *N*-vertex, *d*-regular bipartite *G* and a random (uniform) q coloring of *G*, the fraction of vertices with any given color doesn't differ far from

a) 1/q (*q* even) b) being in [1/(q+1), 1/(q-1)] (*q* odd).

Extension

Theorem (E., Galvin)

Given any *N*-vertex, *d*-regular bipartite *G* and a random (uniform) q coloring of *G*, the fraction of vertices with any given color doesn't differ far from

a) 1/q (*q* even) b) being in [1/(q+1), 1/(q-1)] (*q* odd).

• Why the even/odd difference?

Extension

Theorem (E., Galvin)

Given any *N*-vertex, *d*-regular bipartite *G* and a random (uniform) q coloring of *G*, the fraction of vertices with any given color doesn't differ far from

a) 1/q (*q* even) b) being in [1/(q+1), 1/(q-1)] (*q* odd).

- Why the even/odd difference?
- Can the odd case be improved?
Extension

This idea can be extended to a weighted version:

Theorem (E., Galvin)

Given a fixed *H* and weights $\Lambda = {\lambda_h}_{h \in V(H)}$ on V(H), and any *N*-vertex, *d*-regular bipartite graph *G* with some technical conditions, the number of vertices mapping to a fixed vertex of *H* is close to an ideal value.

Thanks

Thank you!

<ロト < 団ト < 臣ト < 臣ト 王三 のへで 74/74