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The entropy of a discrete random variable X is

ZP 10g2

where p(x) = P(X = x).

@ Think of entropy as the amount of
uncertainty/randomness/surprise in X.

@ For example, if p(x) = 1 for some x, then H(X) = 0.
@ All random variables will be discrete, and log = log,.
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@ Let’s look at a Bernoulli random variable as a function of
the probability p.



Basics Definition Prope

Example

@ Let’s look at a Bernoulli random variable as a function of
the probability p.
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Basic Properties

1
IfQi t, we define H(X|0) = log ——.
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Basic Properties

@ If Qis an event, we define H(X|Q) = > p(x|Q) log

1
p(xlQ)°

The conditional entropy of X given Y is

HOXIY) = EIHCXIY =5D] = 3 2p0) 3 peb)og oy x!y)
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Basic Properties

@ (Chain Rule)
H(X17 s 7Xn) - H(X1)+H(X2’X1)+ : '+H(Xl’l’Xn—17 s 7X1)

@ (Uniform Bound) By Jensen’s inequality (as Zp(x) =1

and log is concave), we have

Zp log — < log(z 1) = log [range(X)|

X

@ H(X) =log|range(X)| <= X s a uniform random variable
@ H(X]Y) <H(X)
@ (Subadditivity) H(X|,...,X,) <> H(X))
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Basics Definition  Properties

Basic Properties Il

A few more useful properties:

@ If Y determines Z then H(X|Y) < H(X|Z)

@ (Conditional Subadditivity) H(Xj,...,X,|Y) <> H(Xi|Y)
For a random vector X = (X, ...,X,) and
AcC[n]=A{1,2,...,n}, let Xy := (X;:i € A).
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Basic Properties Il

A few more useful properties:

@ If Y determines Z then H(X|Y) < H(X|Z)

@ (Conditional Subadditivity) H(X{, ..., X,|Y) <> H(X;|Y)
For a random vector X = (X, ...,X,) and
ACn={1,2,...,n}, letX, = (X;:i € A).

Lemma (Shearer’s Lemma)

LetX = (Xy,...,X,) be a random vector and A a collection of
subsets (possibly with repeats) of [n], with each element of [n]
contained in at least t members of A. Then

HX) < - 57 H(X)).
f AeA
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Matchings
Brégman’s Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G.
How many perfect matchings are there?

a
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Theorem (Brégman)
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Matchings

Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let M be the set of
perfect matchings of G. Then

IM| < (@M.

Remark 1: This theorem is sharp for the
disjoint union of N/2d copies of Ky 4.

Remark 2: The theorem can be interpreted as a theorem about
permanents in {0, 1 }-matrices. It can also easily be generalized
beyond the d-regular condition.
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Matchings
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose o from M uniformly, so
H(o) =log(|M|). Label the vertices on the leftas 1,2,...,N/2;
soo = (o(1),0(2),...,0(N/2)).
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Matchings
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose o from M uniformly, so
H(o) =log(|M|). Label the vertices on the leftas 1,2,...,N/2;
soo = (o(1),0(2),...,0(N/2)).
Pick random 7; look at
o(r(1)),0(7(2)),...,0(7(N/2)) in this order.

Geoese
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Matchings
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose o from M uniformly, so
H(o) =log(|M|). Label the vertices on the leftas 1,2,...,N/2;
soo = (o(1),0(2),...,0(N/2)).
Pick random 7; look at
o(r(1)),0(7(2)),...,0(7(N/2)) in this order.

Fix i; define N;(o, 7) be the neighbors of i
that are NOT already matched for the given
o and 7.

FE PR RS
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Matchings
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose o from M uniformly, so

H(o) =log(|M|). Label the vertices on the leftas 1,2,...,N/2;
soo = (o(1),0(2),...,0(N/2)).

Pick random 7; look at
o(r(1)),0(7(2)),...,0(7(N/2)) in this order.
Fix i; define N;(o, 7) be the neighbors of i
that are NOT already matched for the given
o and 7.

For fixed o, P, (|Ni(0, 7)| = j) = é for
j=1,....d.

FE PR RS
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Matchings
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose o from M uniformly, so
H(o) =log(|M|). Label the vertices on the leftas 1,2,...,N/2;
soo = (o(1),0(2),...,0(N/2)).
Pick random 7; look at
o(r(1)),0(7(2)),...,0(7(N/2)) in this order.

Fix i; define N;(o, 7) be the neighbors of i

. that are NOT already matched for the given

| oandr. |

5 For fixed o, P, (|Ni(o,7)| =) = - for
j=1,....d.

} 1
— Por (N7 =) = 5.
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Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

log|M| = H(o) = Z H(o(r(i)) [o(r(1)),...,o(r(i = 1)))

34/74



Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

N/2

log|M| = H(o ZE lo(r(1)),...,0(r(i —1)))]
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Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

N/2

log|M| = H(o) = ZET[H(U(T(i))\U(T(l)),---,U(T(i—1)))]

IN

N/2 d
ZE {Z (IN; UT)J)IOgJ]

j=1
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Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

N/2
og M| = (o) = D E: [Hlor) [ o(r1):....o(r (1= 1)
N/2
< ZE |:ZP (IN; O‘T])log]]
N/2 4
= Y o

i=1 j=1
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Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

N/2

log|M| = H(o) = ZET[H(U(T(i))\U(T(l)),---,U(T(i—1)))]

N/2

ZE |:ZP (IN; O‘T])log]]

N/2 4a

DI

i=1 j=1
N/2

= Zélogd!

i=1

IN
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Matchings
Proof of Brégman’s Theorem

Putting all of this together, we have:

N/2
log|M| = H(o) = ZET [H(o(r(D) |o(r(1)), ..., o(r(i = 1)))]

N/2

< ZE |:ZP (|N; O‘T])log]]
N/2 4

DI
i=1 j=1
N2

= Zalogd!

i=1
= log(d)N/?
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Matchings

Questions

Question: Is this result true if we remove the word ‘perfect’?

In an N-vertex, d-regular bipartite graph G, let M,,;(G) be the
set of all possible matchings of G. Then

y 5, \ N/2d
(Mi(G)] < [ My (Kag) 2 = <2(> ) |

i=0
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Matchings
Questions

Question: Is this result true if we remove the word ‘perfect’?

Conjecture

In an N-vertex, d-regular bipartite graph G, let M,,;(G) be the
set of all possible matchings of G. Then

d 5 \ N/2d
Ml G)| < [ Mo (Kad) N/ = <Z<> ) |
i=0
Conjecture (Friedland)

In a N-vertex, d-regular bipartite graph G, let M,(G) be the set
of all matchings of size t,t € {0,1,...,N/2} in G. Then

IMi(G)| < M- Kdd)|
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Homomorphisms

Graph Homomorphisms

Given graphs G and H (H possibly with loops), a function
f:V(G) — V(H) is a graph homomorphism if x ~ y implies
f(x) ~f(y) for all x,y € V(G). Denote by Hom(G, H) the set of all

graph homomorphisms from G to H.
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Homomorphisms

Graph Homomorphisms

Given graphs G and H (H possibly with loops), a function
f:V(G) — V(H) is a graph homomorphism if x ~ y implies

f(x) ~f(y) for all x,y € V(G). Denote by Hom(G, H) the set of all
graph homomorphisms from G to H.

Example:

G two H'’s:
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Homomorphisms

Results

Let Z(G) denote the set of all independent sets in a graph G.
Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

Z(G)| < T (Kaa) M.
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Homomorphisms
Results

Let Z(G) denote the set of all independent sets in a graph G.
Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,
IZ(G)| < [Z(Ka.a) M.
This result can be extended to the following:

Theorem (Galvin, Tetali)

For any N-vertex, d-regular bipartite graph G and any H
(possibly with loops),

|[Hom(G, H)| < |Hom(Kqa, H)[".
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so

log |[Hom(G,H)| = H(f)
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so

log|Hom(G,H)| = H(f)
= H(flp) + H(f|z|f]o)
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so
log |Hom(G,H)| = H(f)
= H(flo) + H(fle|flo)
H(flo) + > H(f|flo)

veE

IN
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so

log |Hom(G,H)| = H(f)
= H(flo) +H(f|£/flo)
< H(flo)+ > H(tflo)

veE

H(flo) + > H(f,|N,)

veE

IN
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so

log |Hom(G,H)| = H(f)
= H(flo) +H(f|£/flo)
< H(flo)+ > H(tflo)

veE

H(flo) + > H(f,|N,)

veE

< STHN) + Y HEN)

veE vEE

IN
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so
(f)
= H(flo) + H(fle|flo)

< H(flo)+ ) _H(fflo)

veE

log|Hom(G,H)| = H
H

IN

H(flo) + > H(f,|N,)

veE

< STHN) + Y HEN)

veE vEE

= ,Z ») + dH(£,N,)]

veE
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Homomorphisms
Proof

Choose f uniformly from Hom(G, H), so
(f)
= H(flo) + H(fle|flo)

< H(flo)+ ) _H(fflo)

veE

H(flo) + > H(f,|N,)

veE

< STHN) + Y HEN)

veE vEE

log|Hom(G,H)| = H
H

IN

= ,Z ») + dH(£,N,)]

veE

We’ve localized!
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Homomorphisms
Proof

1
log |Hom(G,H)| < p ;[H(Nv) + dH(f,|N,)]
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Homomorphisms
Proof

1
log |Hom(G,H)| < p ;[H(Nv) + dH(f,|N,)]

From the definitions, the uniform bound, and an application of
Jensen’s formula, we have:

H(N,) + dH(f,|N,) < log |Hom(K 4, H)|

which completes the proof.
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Homomorphisms

Related questions

Theorem (Zhao, 2009)
For any N-vertex, d-regular graph G,

Z(G)] < |1T(Kaa) M.
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Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,
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Conjecture
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Homomorphisms
Related questions

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

1Z(G)| < |Z(Kaa)|N/™.

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with
loops),
\Hom(G, H)| < |Hom(Ky.4, H)|N/*

This conjecture is FALSE! See H being two disjoint loops and
G =K;.
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Homomorphisms
Related questions

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

1Z(G)| < |Z(Kaa)|N/™.

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with
loops),

|Hom(G,H)| < |H0m(Kd,duH)|N/2d

This conjecture is FALSE! See H being two disjoint loops and
G =K;.

An interesting question is: For what H’s does this extension to
general d-regular graphs hold?
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Independent Sets
Hard-Core Distribution

We now put a probability distribution on the set of all
independent sets of G.
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Independent Sets
Hard-Core Distribution

We now put a probability distribution on the set of all
independent sets of G.

Definition

For a finite graph G and A\ > 0, the hard-core distribution with
activity A on Z(G) is given by

Al

pal) = SN 1 e Z(G)}

for1 € Z(G).
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independent sets of G.

Definition

For a finite graph G and A\ > 0, the hard-core distribution with
activity A on Z(G) is given by

Al

pal) = SN 1 e Z(G)}

for1 € Z(G).

@ Note: \ = 1 gives the uniform distribution on Z(G).
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Independent Sets
Hard-Core Distribution

We now put a probability distribution on the set of all
independent sets of G.
Definition

For a finite graph G and A\ > 0, the hard-core distribution with
activity A on Z(G) is given by

Al

pal) = SN 1 e Z(G)}

for1 € Z(G).

@ Note: \ = 1 gives the uniform distribution on Z(G).
@ We'll restrict our G to be N-vertex, d-regular, and bipartite.
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Independent Sets
Hard-Core Distribution

Now, how do you get a lot of independent sets in G?
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Independent Sets
Hard-Core Distribution

Now, how do you get a lot of independent sets in G?

-
A
@ Letay = 2(1+)\).

@ ifIis an independent set chosen according to p, , let
p(v):=P(vel),andp = Z p(v) (= E[[I]]/N).
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Independent Sets
Theorem

Theorem (Kahn)

Fix A > 0, and let 1 be chosen according to p) on G. Then
D= ay

and, furthermore, most independent sets have size close to
a)N.
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Independent Sets
Theorem

Theorem (Kahn)

Fix A > 0, and let 1 be chosen according to p) on G. Then
D= ay

and, furthermore, most independent sets have size close to
a)N.

@ Example: A = 1 is the uniform case, where a, = 1/4.
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Independent Sets
Theorem

Theorem (Kahn)

Fix A > 0, and let 1 be chosen according to p) on G. Then
D= ay

and, furthermore, most independent sets have size close to
a)N.

@ Example: A = 1 is the uniform case, where a, = 1/4.
@ Entropy allows us to count independent sets of a fixed size.

69/74



Independent Sets
Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random

(uniform) q coloring of G, the fraction of vertices with any given
color doesn't differ far from

a) 1/q (g even)
b) being in[1/(q+ 1), 1/(¢ — 1)] (4 odad).
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Independent Sets
Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random

(uniform) q coloring of G, the fraction of vertices with any given
color doesn't differ far from

a) 1/q (g even)
b) being in[1/(q+ 1), 1/(¢ — 1)] (4 odad).

@ Why the even/odd difference?
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Independent Sets
Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random

(uniform) q coloring of G, the fraction of vertices with any given
color doesn't differ far from

a) 1/q (g even)
b) being in[1/(q+ 1), 1/(¢ — 1)] (4 odad).

@ Why the even/odd difference?
@ Can the odd case be improved?
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Independent Sets
Extension

This idea can be extended to a weighted version:

Theorem (E., Galvin)

Given a fixed H and weights A = {\n} ey () on V(H), and any
N-vertex, d-regular bipartite graph G with some technical
conditions, the number of vertices mapping to a fixed vertex of
H is close to an ideal value.
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Independent Sets
Thanks

Thank you!
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