Entropy and Counting

John Engbers

Department of Mathematics
University of Notre Dame

Oral Exam, January 2010
Outline

1 Basics
 - Definition
 - Properties

2 Matchings

3 Homomorphisms

4 Independent Sets
Definition

The *entropy* of a discrete random variable X is

$$H(X) = \sum_x p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(X = x)$.

Think of entropy as the amount of uncertainty/randomness/surprise in X. For example, if $p(x) = 1$ for some x, then $H(X) = 0$. All random variables will be discrete, and $\log = \log_2$.
Entropy

Definition

The *entropy* of a discrete random variable X is

$$H(X) = \sum_x p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(X = x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in X.
The entropy of a discrete random variable X is

$$H(X) = \sum_x p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(X = x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in X.
- For example, if $p(x) = 1$ for some x, then $H(X) = 0$.
Definition

The *entropy* of a discrete random variable X is

$$H(X) = \sum_x p(x) \log_2 \frac{1}{p(x)},$$

where $p(x) = P(X = x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in X.
- For example, if $p(x) = 1$ for some x, then $H(X) = 0$.
- All random variables will be discrete, and $\log = \log_2$.

Entrophy
Example

Let’s look at a Bernoulli random variable as a function of the probability p.
Example

- Let’s look at a Bernoulli random variable as a function of the probability p.

Note: $H(p) := H(X)$
Basic Properties

If Q is an event, we define $H(X|Q) = \sum p(x|Q) \log \frac{1}{p(x|Q)}$.
If Q is an event, we define $H(X|Q) = \sum p(x|Q) \log \frac{1}{p(x|Q)}$.

Definition

The *conditional entropy* of X given Y is

$$H(X|Y) = E[H(X|\{Y = y\})] = \sum_y p(y) \sum_x p(x|y) \log \frac{1}{p(x|y)}.$$
Basic Properties

(Chain Rule)

\[H(X_1, \ldots, X_n) = H(X_1) + H(X_2 | X_1) + \cdots + H(X_n | X_{n-1}, \ldots, X_1) \]
Basic Properties

- (Chain Rule)
 \[H(X_1, \ldots, X_n) = H(X_1) + H(X_2|X_1) + \cdots + H(X_n|X_{n-1}, \ldots, X_1) \]

- (Uniform Bound) By Jensen’s inequality (as \(\sum_x p(x) = 1 \) and \(\log \) is concave), we have

 \[H(X) = \sum_x p(x) \log \frac{1}{p(x)} \leq \log(\sum_x 1) = \log |\text{range}(X)| \]
Basic Properties

- **(Chain Rule)**
 \[H(X_1, \ldots, X_n) = H(X_1) + H(X_2|X_1) + \cdots + H(X_n|X_{n-1}, \ldots, X_1) \]

- **(Uniform Bound)** By Jensen’s inequality (as \(\sum_x p(x) = 1 \) and log is concave), we have

 \[H(X) = \sum_x p(x) \log \frac{1}{p(x)} \leq \log(\sum_x 1) = \log |\text{range}(X)| \]

- \(H(X) = \log |\text{range}(X)| \iff X \) is a uniform random variable
Basic Properties

- (Chain Rule)
 \[H(X_1, \ldots, X_n) = H(X_1) + H(X_2|X_1) + \cdots + H(X_n|X_{n-1}, \ldots, X_1) \]

- (Uniform Bound) By Jensen’s inequality (as \(\sum_x p(x) = 1 \)
 and \(\log \) is concave), we have
 \[H(X) = \sum_x p(x) \log \frac{1}{p(x)} \leq \log(\sum_x 1) = \log |\text{range}(X)| \]

- \(H(X) = \log |\text{range}(X)| \iff X \) is a uniform random variable

- \(H(X|Y) \leq H(X) \)
Basic Properties

- **(Chain Rule)**
 \[H(X_1, \ldots, X_n) = H(X_1) + H(X_2 | X_1) + \cdots + H(X_n | X_{n-1}, \ldots, X_1) \]

- **(Uniform Bound)** By Jensen’s inequality (as \(\sum_x p(x) = 1 \) and log is concave), we have
 \[
 H(X) = \sum_x p(x) \log \frac{1}{p(x)} \leq \log \left(\sum_x 1 \right) = \log |\text{range}(X)|
 \]

- \(H(X) = \log |\text{range}(X)| \iff X \) is a uniform random variable

- \(H(X|Y) \leq H(X) \)

- **(Subadditivity)** \(H(X_1, \ldots, X_n) \leq \sum H(X_i) \)
A few more useful properties:
A few more useful properties:

- If Y determines Z then $H(X|Y) \leq H(X|Z)$
A few more useful properties:

- If Y determines Z then $H(X|Y) \leq H(X|Z)$
- (Conditional Subadditivity) $H(X_1, \ldots, X_n|Y) \leq \sum H(X_i|Y)$
A few more useful properties:

- If Y determines Z then $H(X|Y) \leq H(X|Z)$
- (Conditional Subadditivity) $H(X_1, \ldots, X_n|Y) \leq \sum H(X_i|Y)$

For a random vector $X = (X_1, \ldots, X_n)$ and $A \subset [n] = \{1, 2, \ldots, n\}$, let $X_A := (X_i : i \in A)$.
A few more useful properties:

- If Y determines Z then $H(X|Y) \leq H(X|Z)$
- (Conditional Subadditivity) $H(X_1, \ldots, X_n|Y) \leq \sum H(X_i|Y)$

For a random vector $X = (X_1, \ldots, X_n)$ and $A \subset [n] = \{1, 2, \ldots, n\}$, let $X_A := (X_i : i \in A)$.

Lemma (Shearer’s Lemma)

Let $X = (X_1, \ldots, X_n)$ be a random vector and A a collection of subsets (possibly with repeats) of $[n]$, with each element of $[n]$ contained in at least t members of A. Then

$$H(X) \leq \frac{1}{t} \sum_{A \in A} H(X_A).$$
Brégman’s Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G. How many perfect matchings are there?
Brégman’s Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G. How many perfect matchings are there?
Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$|\mathcal{M}| \leq (d!)^{N/2d}.$$
Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$|\mathcal{M}| \leq (d!)^{N/2d}.$$
Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$|\mathcal{M}| \leq (d!)^{N/2d}.$$

Remark 1: This theorem is sharp for the disjoint union of $N/2d$ copies of $K_{d,d}$.
Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$|\mathcal{M}| \leq (d!)^{N/2d}.$$

Remark 1: This theorem is sharp for the disjoint union of $N/2d$ copies of $K_{d,d}$.

Remark 2: The theorem can be interpreted as a theorem about permanents in $\{0,1\}$-matrices. It can also easily be generalized beyond the d-regular condition.
Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$|\mathcal{M}| \leq (d!)^{N/2d}.$$

Remark 1: This theorem is sharp for the disjoint union of $N/2d$ copies of $K_{d,d}$.

Remark 2: The theorem can be interpreted as a theorem about permanents in $\{0, 1\}$-matrices. It can also easily be generalized beyond the d-regular condition.
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose \(\sigma \) from \(\mathcal{M} \) uniformly, so

\[
H(\sigma) = \log(|\mathcal{M}|).
\]

Label the vertices on the left as 1, 2, \ldots, \(N/2 \);
so \(\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2)) \).
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose σ from M uniformly, so $H(\sigma) = \log(|M|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N/2))$ in this order.
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N/2))$ in this order.

Fix i; define $N_i(\sigma, \tau)$ be the neighbors of i that are NOT already matched for the given σ and τ.

For fixed σ, $P_{\tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$ for $j = 1, \ldots, d$. Then $P_{\sigma, \tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$.

31 / 74
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose \(\sigma \) from \(\mathcal{M} \) uniformly, so \(H(\sigma) = \log(|\mathcal{M}|) \). Label the vertices on the left as 1, 2, \ldots, \(N/2 \); so \(\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2)) \).

Pick random \(\tau \); look at \(\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N/2)) \) in this order.

Fix \(i \); define \(N_i(\sigma, \tau) \) be the neighbors of \(i \) that are NOT already matched for the given \(\sigma \) and \(\tau \).

For fixed \(\sigma \), \(P_\tau(|N_i(\sigma, \tau)| = j) = \frac{1}{d} \) for \(j = 1, \ldots, d \).
Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma) = \log(|\mathcal{M}|)$. Label the vertices on the left as $1, 2, \ldots, N/2$; so $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(N/2))$.

Pick random τ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N/2))$ in this order.

Fix i; define $N_i(\sigma, \tau)$ be the neighbors of i that are NOT already matched for the given σ and τ.

For fixed σ, $P_\tau(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$ for $j = 1, \ldots, d$.

$\implies P_{\sigma, \tau}(|N_i(\sigma, \tau)| = j) = \frac{1}{d}$.
Proof of Brégman’s Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} H(\sigma(\tau(i)) | \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))$$
Proof of Brégman’s Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_\tau \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1))) \right]$$
Proof of Brégman’s Theorem

Putting all of this together, we have:

\[\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} [H(\sigma(\tau(i)) | \sigma(\tau(1)), \ldots, \sigma(\tau(i - 1)))] \]

\[\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_i(\sigma, \tau)| = j) \log j \right] \]

\[\leq \frac{N}{2} \sum_{i=1}^{d} \log d \]

\[\leq \log(d!) \]
Proof of Brégman’s Theorem

Putting all of this together, we have:

$$\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_\tau \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1))) \right]$$

$$\leq \sum_{i=1}^{N/2} E_\tau \left[\sum_{j=1}^{d} P_\sigma(|N_i(\sigma, \tau)| = j) \log j \right]$$

$$= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j$$
Proof of Brégman’s Theorem

Putting all of this together, we have:

\[
\log |M| = H(\sigma) = \sum_{i=1}^{N/2} E_{\tau} \left[H(\sigma(\tau(i)) | \sigma(\tau(1)), \ldots, \sigma(\tau(i-1))) \right]
\]

\[
\leq \sum_{i=1}^{N/2} E_{\tau} \left[\sum_{j=1}^{d} P_{\sigma}(|N_i(\sigma, \tau)| = j) \log j \right]
\]

\[
= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j
\]

\[
= \sum_{i=1}^{N/2} \frac{1}{d} \log d!
\]
Proof of Brégman’s Theorem

Putting all of this together, we have:

\[
\log |\mathcal{M}| = H(\sigma) = \sum_{i=1}^{N/2} E_\tau \left[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1))) \right]
\]

\[
\leq \sum_{i=1}^{N/2} E_\tau \left[\sum_{j=1}^{d} P_\sigma(|N_i(\sigma, \tau)| = j) \log j \right]
\]

\[
= \sum_{i=1}^{N/2} \sum_{j=1}^{d} \frac{1}{d} \log j
\]

\[
= \sum_{i=1}^{N/2} \frac{1}{d} \log d!
\]

\[
= \log(d!)^{N/2d}
\]
Question: Is this result true if we remove the word ‘perfect’?

Conjecture

In an \(N \)-vertex, \(d \)-regular bipartite graph \(G \), let \(\mathcal{M}_{\text{tot}}(G) \) be the set of all possible matchings of \(G \). Then

\[
|\mathcal{M}_{\text{tot}}(G)| \leq |\mathcal{M}_{\text{tot}}(K_{d,d})|^{N/2d} = \left(\sum_{i=0}^{d} \binom{d}{i}^2 \frac{1}{i!} \right)^{N/2d}.
\]
Question: Is this result true if we remove the word ‘perfect’?

Conjecture

In an N-vertex, d-regular bipartite graph G, let $\mathcal{M}_{tot}(G)$ be the set of all possible matchings of G. Then

$$|\mathcal{M}_{tot}(G)| \leq |\mathcal{M}_{tot}(K_{d,d})|^{N/2d} = \left(\sum_{i=0}^{d} \binom{d}{i}^2 \frac{i!}{i} \right)^{N/2d}.$$

Conjecture (Friedland)

In a N-vertex, d-regular bipartite graph G, let $\mathcal{M}_t(G)$ be the set of all matchings of size t, $t \in \{0, 1, \ldots, N/2\}$ in G. Then

$$|\mathcal{M}_t(G)| \leq |\mathcal{M}_t(\frac{N}{2d}K_{d,d})|.$$
Definition

Given graphs G and H (H possibly with loops), a function $f : V(G) \rightarrow V(H)$ is a graph homomorphism if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by $Hom(G, H)$ the set of all graph homomorphisms from G to H.
Graph Homomorphisms

Definition

Given graphs G and H (H possibly with loops), a function $f : V(G) \to V(H)$ is a *graph homomorphism* if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by $Hom(G, H)$ the set of all graph homomorphisms from G to H.

Example:

Given graphs G and two H’s:

```
G
```

```
two H’s:
```

[Diagram showing a graph G and two distinct graphs H with arrows indicating a homomorphism from G to H.]
Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^N/2^d.$$
Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^N/2^d.$$

This result can be extended to the following:
Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$$

This result can be extended to the following:

Theorem (Galvin, Tetali)

For any N-vertex, d-regular bipartite graph G and any H (possibly with loops),

$$|\text{Hom}(G, H)| \leq |\text{Hom}(K_{d,d}, H)|^{N/2d}.$$
Proof

Choose f uniformly from $\text{Hom}(G, H)$, so

$$\log |\text{Hom}(G, H)| = H(f)$$
Proof

Choose f uniformly from $\text{Hom}(G, H)$, so

$$\log |\text{Hom}(G, H)| = H(f)$$

$$= H(f|_O) + H(f|_{E}f|_O)$$
Choose f uniformly from $\text{Hom}(G, H)$, so

$$\log |\text{Hom}(G, H)| = H(f)$$

$$= H(f|_O) + H(f|_E)$$

$$\leq H(f|_O) + \sum_{v \in E} H(f_v|_f|_O)$$
Choose f uniformly from $\text{Hom}(G, H)$, so

$$\log |\text{Hom}(G, H)| = H(f)$$

$$= H(f|_O) + H(f|_E|f|_O)$$

$$\leq H(f|_O) + \sum_{v \in E} H(f_v|f|_O)$$

$$\leq H(f|_O) + \sum_{v \in E} H(f_v|N_v)$$

We've localized!
Proof

Choose f uniformly from $\text{Hom}(G, H)$, so

$$\log |\text{Hom}(G, H)| = H(f)$$

$$= H(f|_O) + H(f|_E|_f|_O)$$

$$\leq H(f|_O) + \sum_{v \in E} H(f_v|_f|_O)$$

$$\leq H(f|_O) + \sum_{v \in E} H(f_v|N_v)$$

$$\leq \frac{1}{d} \sum_{v \in E} H(N_v) + \sum_{v \in E} H(f_v|N_v)$$

We've localized!
Proof

Choose f uniformly from $\text{Hom}(G, H)$, so

\[
\log |\text{Hom}(G, H)| = H(f) \\
= H(f|_O) + H(f|_E f|_O) \\
\leq H(f|_O) + \sum_{v \in E} H(f_v f|_O) \\
\leq H(f|_O) + \sum_{v \in E} H(f_v N_v) \\
\leq \frac{1}{d} \sum_{v \in E} H(N_v) + \sum_{v \in E} H(f_v N_v) \\
= \frac{1}{d} \sum_{v \in E} [H(N_v) + dH(f_v N_v)]
\]
Proof

Choose f uniformly from $\text{Hom}(G, H)$, so

\[
\log |\text{Hom}(G, H)| = H(f)
\]

\[
= H(f|_O) + H(f|_E|f|_O)
\]

\[
\leq H(f|_O) + \sum_{v \in E} H(f_v|f|_O)
\]

\[
\leq H(f|_O) + \sum_{v \in E} H(f_v|N_v)
\]

\[
\leq \frac{1}{d} \sum_{v \in E} H(N_v) + \sum_{v \in E} H(f_v|N_v)
\]

\[
= \frac{1}{d} \sum_{v \in E} [H(N_v) + dH(f_v|N_v)]
\]

We’ve localized!
Proof

$$\log |\text{Hom}(G, H)| \leq \frac{1}{d} \sum_{v \in E} [H(N_v) + dH(f_v|N_v)]$$
Proof

$$\log |\text{Hom}(G,H)| \leq \frac{1}{d} \sum_{v \in E} [H(N_v) + dH(f_v|N_v)]$$

From the definitions, the uniform bound, and an application of Jensen’s formula, we have:

$$H(N_v) + dH(f_v|N_v) \leq \log |\text{Hom}(K_{d,d}, H)|$$

which completes the proof.
Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$$
Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^N/2d.\]

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$|\text{Hom}(G, H)| \leq |\text{Hom}(K_{d,d}, H)|^N/2d$$

This conjecture is FALSE! See H being two disjoint loops and $G = K_3$. An interesting question is: For what H's does this extension to general d-regular graphs hold?
Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$|I(G)| \leq |I(K_{d,d})|^{N/2d}.$$

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$|\text{Hom}(G,H)| \leq |\text{Hom}(K_{d,d},H)|^{N/2d}$$

This conjecture is FALSE! See H being two disjoint loops and $G = K_3$.

An interesting question is: For what H's does this extension to general d-regular graphs hold?
Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$|\mathcal{I}(G)| \leq |\mathcal{I}(K_{d,d})|^{N/2d}.$$

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$|\text{Hom}(G, H)| \leq |\text{Hom}(K_{d,d}, H)|^{N/2d}$$

This conjecture is FALSE! See H being two disjoint loops and $G = K_3$.

An interesting question is: For what H’s does this extension to general d-regular graphs hold?
We now put a probability distribution on the set of all independent sets of G.

Definition
For a finite graph G and $\lambda > 0$, the hard-core distribution with activity λ on $I(G)$ is given by
$$p_\lambda(I) = \frac{\lambda |I|}{\sum \{\lambda |I'| : I' \in I(G)\}}$$
for $I \in I(G)$.

Note: $\lambda = 1$ gives the uniform distribution on $I(G)$.

We'll restrict our G to be N-vertex, d-regular, and bipartite.
Hard-Core Distribution

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda > 0$, the *hard-core distribution* with *activity* λ on $\mathcal{I}(G)$ is given by

$$p_\lambda(I) = \frac{\lambda^{|I|}}{\sum\{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}}$$

for $I \in \mathcal{I}(G)$. Note: $\lambda = 1$ gives the uniform distribution on $\mathcal{I}(G)$. We'll restrict our G to be N-vertex, d-regular, and bipartite.
We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda > 0$, the *hard-core distribution* with activity λ on $\mathcal{I}(G)$ is given by

$$p_{\lambda}(I) = \frac{\lambda^{|I|}}{\sum\{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}} \quad \text{for } I \in \mathcal{I}(G).$$

Note: $\lambda = 1$ gives the uniform distribution on $\mathcal{I}(G)$.
We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda > 0$, the *hard-core distribution* with *activity* λ on $\mathcal{I}(G)$ is given by

$$p_{\lambda}(I) = \frac{\lambda^{|I|}}{\sum\{\lambda^{|I'|} : I' \in \mathcal{I}(G)\}}$$

for $I \in \mathcal{I}(G)$.

- Note: $\lambda = 1$ gives the uniform distribution on $\mathcal{I}(G)$.
- We’ll restrict our G to be N-vertex, d-regular, and bipartite.
Now, how do you get a lot of independent sets in G?
Now, how do you get a lot of independent sets in G?

- Let $\alpha_\lambda = \frac{\lambda}{2(1 + \lambda)}$.
Now, how do you get a lot of independent sets in G?

Let $\alpha_\lambda = \frac{\lambda}{2(1 + \lambda)}$.

If I is an independent set chosen according to p_λ, let $p(v) := P(v \in I)$, and $\bar{p} = \sum_v p(v) \ (= E[|I|]/N)$.

Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_λ on G. Then

$$\bar{p} \approx \alpha_\lambda$$

and, furthermore, most independent sets have size close to $\alpha_\lambda N$.
Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_λ on G. Then

$$\bar{p} \approx \alpha_\lambda$$

and, furthermore, most independent sets have size close to $\alpha_\lambda N$.

- Example: $\lambda = 1$ is the uniform case, where $\alpha_\lambda = 1/4$.
Theorem (Kahn)

Fix $\lambda > 0$, and let I be chosen according to p_λ on G. Then

$$\bar{p} \approx \alpha_\lambda$$

and, furthermore, most independent sets have size close to $\alpha_\lambda N$.

- Example: $\lambda = 1$ is the uniform case, where $\alpha_\lambda = 1/4$.
- Entropy allows us to count independent sets of a fixed size.
Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn’t differ far from

a) $1/q$ (q even)

b) being in $[1/(q + 1), 1/(q - 1)]$ (q odd).
Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn’t differ far from

- $a) 1/q$ (q even)
- $b)$ being in $[1/(q + 1), 1/(q - 1)]$ (q odd).

Why the even/odd difference?
Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn’t differ far from

a) $1/q$ (q even)

b) being in $[1/(q+1), 1/(q-1)]$ (q odd).

Why the even/odd difference?

Can the odd case be improved?
This idea can be extended to a weighted version:

Theorem (E., Galvin)

Given a fixed H and weights $\Lambda = \{\lambda_h\}_{h \in V(H)}$ on $V(H)$, and any N-vertex, d-regular bipartite graph G with some technical conditions, the number of vertices mapping to a fixed vertex of H is close to an ideal value.
Thank you!