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Basics Matchings Homomorphisms Independent Sets Definition Properties

Entropy

Definition
The entropy of a discrete random variable X is

H(X) =
∑

x

p(x) log2
1

p(x)
,

where p(x) = P(X = x).

Think of entropy as the amount of
uncertainty/randomness/surprise in X.
For example, if p(x) = 1 for some x, then H(X) = 0.
All random variables will be discrete, and log = log2.
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Basics Matchings Homomorphisms Independent Sets Definition Properties

Example

Let’s look at a Bernoulli random variable as a function of
the probability p.

Note: H(p) := H(X)
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Basics Matchings Homomorphisms Independent Sets Definition Properties

Basic Properties

If Q is an event, we define H(X|Q) =
∑

p(x|Q) log
1

p(x|Q)
.

Definition
The conditional entropy of X given Y is

H(X|Y) = E[H(X|{Y = y})] =
∑

y

p(y)
∑

x

p(x|y) log
1

p(x|y)
.
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Basic Properties

(Chain Rule)
H(X1, . . . ,Xn) = H(X1)+H(X2|X1)+· · ·+H(Xn|Xn−1, . . . ,X1)

(Uniform Bound) By Jensen’s inequality (as
∑

x

p(x) = 1

and log is concave), we have

H(X) =
∑

x

p(x) log
1

p(x)
≤ log(

∑
x

1) = log |range(X)|

H(X) = log |range(X)| ⇐⇒ X is a uniform random variable
H(X|Y) ≤ H(X)
(Subadditivity) H(X1, . . . ,Xn) ≤

∑
H(Xi)
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Basics Matchings Homomorphisms Independent Sets Definition Properties

Basic Properties II

A few more useful properties:

If Y determines Z then H(X|Y) ≤ H(X|Z)
(Conditional Subadditivity) H(X1, . . . ,Xn|Y) ≤

∑
H(Xi|Y)

For a random vector X = (X1, . . . ,Xn) and
A ⊂ [n] = {1, 2, . . . , n}, let XA := (Xi : i ∈ A).

Lemma (Shearer’s Lemma)

Let X = (X1, . . . ,Xn) be a random vector and A a collection of
subsets (possibly with repeats) of [n], with each element of [n]
contained in at least t members of A. Then

H(X) ≤ 1
t

∑
A∈A

H(XA).
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Brégman’s Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G.
How many perfect matchings are there?
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Basics Matchings Homomorphisms Independent Sets

Brégman’s Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, letM be the set of
perfect matchings of G. Then

|M| ≤ (d!)N/2d.

Remark 1: This theorem is sharp for the
disjoint union of N/2d copies of Kd,d.

Remark 2: The theorem can be interpreted as a theorem about
permanents in {0, 1}-matrices. It can also easily be generalized
beyond the d-regular condition.
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Basics Matchings Homomorphisms Independent Sets

Proof of Brégman’s Theorem

Proof: (Radhakrishnan) Choose σ fromM uniformly, so
H(σ) = log(|M|). Label the vertices on the left as 1, 2, . . . ,N/2;
so σ = (σ(1), σ(2), . . . , σ(N/2)).

Pick random τ ; look at
σ(τ(1)), σ(τ(2)), . . . , σ(τ(N/2)) in this order.

Fix i; define Ni(σ, τ) be the neighbors of i
that are NOT already matched for the given
σ and τ .
For fixed σ, Pτ (|Ni(σ, τ)| = j) =

1
d

for
j = 1, . . . , d.

=⇒ Pσ,τ (|Ni(σ, τ)| = j) =
1
d

.
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Proof of Brégman’s Theorem

Putting all of this together, we have:

log |M| = H(σ) =
N/2∑
i=1

Eτ [

H(σ(τ(i)) |σ(τ(1)), . . . , σ(τ(i− 1)))

]

≤
N/2∑
i=1

Eτ

 d∑
j=1

Pσ(|Ni(σ, τ)| = j) log j


=

N/2∑
i=1

d∑
j=1

1
d

log j

=
N/2∑
i=1

1
d

log d!

= log(d!)N/2d
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Questions

Question: Is this result true if we remove the word ‘perfect’?

Conjecture

In an N-vertex, d-regular bipartite graph G, letMtot(G) be the
set of all possible matchings of G. Then

|Mtot(G)| ≤ |Mtot(Kd,d)|N/2d =

(
d∑

i=0

(
d
i

)2

i!

)N/2d

.

Conjecture (Friedland)

In a N-vertex, d-regular bipartite graph G, letMt(G) be the set
of all matchings of size t, t ∈ {0, 1, ...,N/2} in G. Then

|Mt(G)| ≤ |Mt(
N
2d

Kd,d)|.
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Basics Matchings Homomorphisms Independent Sets

Graph Homomorphisms

Definition
Given graphs G and H (H possibly with loops), a function
f : V(G)→ V(H) is a graph homomorphism if x ∼ y implies
f (x) ∼ f (y) for all x, y ∈ V(G). Denote by Hom(G,H) the set of all
graph homomorphisms from G to H.

Example:
G two H’s:
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Results

Let I(G) denote the set of all independent sets in a graph G.

Theorem (Kahn)
For any N-vertex, d-regular bipartite graph G,

|I(G)| ≤ |I(Kd,d)|N/2d.

This result can be extended to the following:

Theorem (Galvin, Tetali)
For any N-vertex, d-regular bipartite graph G and any H
(possibly with loops),

|Hom(G,H)| ≤ |Hom(Kd,d,H)|N/2d.
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Proof

Choose f uniformly from Hom(G,H), so

log |Hom(G,H)| = H(f)

= H(f|O) + H(f|E|f|O)

≤ H(f|O) +
∑
v∈E

H(fv|f|O)

≤ H(f|O) +
∑
v∈E

H(fv|Nv)

≤ 1
d

∑
v∈E

H(Nv) +
∑
v∈E

H(fv|Nv)

=
1
d

∑
v∈E

[H(Nv) + dH(fv|Nv)]

We’ve localized!
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Proof

log |Hom(G,H)| ≤ 1
d

∑
v∈E

[H(Nv) + dH(fv|Nv)]

From the definitions, the uniform bound, and an application of
Jensen’s formula, we have:

H(Nv) + dH(fv|Nv) ≤ log |Hom(Kd,d,H)|

which completes the proof.

54 / 74



Basics Matchings Homomorphisms Independent Sets

Proof

log |Hom(G,H)| ≤ 1
d

∑
v∈E

[H(Nv) + dH(fv|Nv)]

From the definitions, the uniform bound, and an application of
Jensen’s formula, we have:

H(Nv) + dH(fv|Nv) ≤ log |Hom(Kd,d,H)|

which completes the proof.

55 / 74



Basics Matchings Homomorphisms Independent Sets

Related questions

Theorem (Zhao, 2009)
For any N-vertex, d-regular graph G,

|I(G)| ≤ |I(Kd,d)|N/2d.

Conjecture
For any N-vertex, d-regular graph G and any H (possibly with
loops),

|Hom(G,H)| ≤ |Hom(Kd,d,H)|N/2d

This conjecture is FALSE! See H being two disjoint loops and
G = K3.

An interesting question is: For what H’s does this extension to
general d-regular graphs hold?
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Hard-Core Distribution

We now put a probability distribution on the set of all
independent sets of G.

Definition
For a finite graph G and λ > 0, the hard-core distribution with
activity λ on I(G) is given by

pλ(I) =
λ|I|∑

{λ|I′| : I′ ∈ I(G)}
for I ∈ I(G).

Note: λ = 1 gives the uniform distribution on I(G).
We’ll restrict our G to be N-vertex, d-regular, and bipartite.
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Hard-Core Distribution

Now, how do you get a lot of independent sets in G?

Let αλ =
λ

2(1 + λ)
.

if I is an independent set chosen according to pλ , let
p(v) := P(v ∈ I), and p̄ =

∑
v

p(v) (= E[|I|]/N).
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Theorem

Theorem (Kahn)
Fix λ > 0, and let I be chosen according to pλ on G. Then

p̄ ≈ αλ

and, furthermore, most independent sets have size close to
αλN.

Example: λ = 1 is the uniform case, where αλ = 1/4.
Entropy allows us to count independent sets of a fixed size.
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Extension

Theorem (E., Galvin)
Given any N-vertex, d-regular bipartite G and a random
(uniform) q coloring of G, the fraction of vertices with any given
color doesn’t differ far from

a) 1/q (q even)
b) being in [1/(q + 1), 1/(q− 1)] (q odd).

Why the even/odd difference?
Can the odd case be improved?
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Extension

This idea can be extended to a weighted version:

Theorem (E., Galvin)

Given a fixed H and weights Λ = {λh}h∈V(H) on V(H), and any
N-vertex, d-regular bipartite graph G with some technical
conditions, the number of vertices mapping to a fixed vertex of
H is close to an ideal value.
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Thanks

Thank you!
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