Entropy and Counting

John Engbers

Department of Mathematics
University of Notre Dame
Oral Exam, January 2010

Outline

(1) Basics

- Definition
- Properties
(2) Matchings
(3) Homomorphisms

4 Independent Sets

Entropy

Definition

The entropy of a discrete random variable \mathbf{X} is

$$
H(\mathbf{X})=\sum_{x} p(x) \log _{2} \frac{1}{p(x)}
$$

where $p(x)=P(\mathbf{X}=x)$.

Entropy

Definition

The entropy of a discrete random variable \mathbf{X} is

$$
H(\mathbf{X})=\sum_{x} p(x) \log _{2} \frac{1}{p(x)}
$$

where $p(x)=P(\mathbf{X}=x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in \mathbf{X}.

Entropy

Definition

The entropy of a discrete random variable \mathbf{X} is

$$
H(\mathbf{X})=\sum_{x} p(x) \log _{2} \frac{1}{p(x)}
$$

where $p(x)=P(\mathbf{X}=x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in \mathbf{X}.
- For example, if $p(x)=1$ for some x, then $H(\mathbf{X})=0$.

Entropy

Definition

The entropy of a discrete random variable \mathbf{X} is

$$
H(\mathbf{X})=\sum_{x} p(x) \log _{2} \frac{1}{p(x)}
$$

where $p(x)=P(\mathbf{X}=x)$.

- Think of entropy as the amount of uncertainty/randomness/surprise in \mathbf{X}.
- For example, if $p(x)=1$ for some x, then $H(\mathbf{X})=0$.
- All random variables will be discrete, and $\log =\log _{2}$.

Example

- Let's look at a Bernoulli random variable as a function of the probability p.

Example

- Let's look at a Bernoulli random variable as a function of the probability p.

Basic Properties

- If Q is an event, we define $H(\mathbf{X} \mid Q)=\sum p(x \mid Q) \log \frac{1}{p(x \mid Q)}$.

Basic Properties

- If Q is an event, we define $H(\mathbf{X} \mid Q)=\sum p(x \mid Q) \log \frac{1}{p(x \mid Q)}$.

Definition

The conditional entropy of \mathbf{X} given \mathbf{Y} is

$$
H(\mathbf{X} \mid \mathbf{Y})=E[H(\mathbf{X} \mid\{\mathbf{Y}=y\})]=\sum_{y} p(y) \sum_{x} p(x \mid y) \log \frac{1}{p(x \mid y)}
$$

Basic Properties

- (Chain Rule)

$$
H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=H\left(\mathbf{X}_{1}\right)+H\left(\mathbf{X}_{2} \mid \mathbf{X}_{1}\right)+\cdots+H\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}, \ldots, \mathbf{X}_{1}\right)
$$

Basic Properties

- (Chain Rule)

$$
H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=H\left(\mathbf{X}_{1}\right)+H\left(\mathbf{X}_{2} \mid \mathbf{X}_{1}\right)+\cdots+H\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}, \ldots, \mathbf{X}_{1}\right)
$$

- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x)=1$ and log is concave), we have

$$
H(\mathbf{X})=\sum_{x} p(x) \log \frac{1}{p(x)} \leq \log \left(\sum_{x} 1\right)=\log |\operatorname{range}(\mathbf{X})|
$$

Basic Properties

- (Chain Rule)

$$
H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=H\left(\mathbf{X}_{1}\right)+H\left(\mathbf{X}_{2} \mid \mathbf{X}_{1}\right)+\cdots+H\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}, \ldots, \mathbf{X}_{1}\right)
$$

- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x)=1$ and log is concave), we have

$$
H(\mathbf{X})=\sum_{x} p(x) \log \frac{1}{p(x)} \leq \log \left(\sum_{x} 1\right)=\log |\operatorname{range}(\mathbf{X})|
$$

- $H(\mathbf{X})=\log |\operatorname{range}(\mathbf{X})| \Longleftrightarrow \mathbf{X}$ is a uniform random variable

Basic Properties

- (Chain Rule)

$$
H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=H\left(\mathbf{X}_{1}\right)+H\left(\mathbf{X}_{2} \mid \mathbf{X}_{1}\right)+\cdots+H\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}, \ldots, \mathbf{X}_{1}\right)
$$

- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x)=1$ and log is concave), we have

$$
H(\mathbf{X})=\sum_{x} p(x) \log \frac{1}{p(x)} \leq \log \left(\sum_{x} 1\right)=\log |\operatorname{range}(\mathbf{X})|
$$

- $H(\mathbf{X})=\log |\operatorname{range}(\mathbf{X})| \Longleftrightarrow \mathbf{X}$ is a uniform random variable
- $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X})$

Basic Properties

- (Chain Rule)

$$
H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=H\left(\mathbf{X}_{1}\right)+H\left(\mathbf{X}_{2} \mid \mathbf{X}_{1}\right)+\cdots+H\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}, \ldots, \mathbf{X}_{1}\right)
$$

- (Uniform Bound) By Jensen's inequality (as $\sum_{x} p(x)=1$ and log is concave), we have

$$
H(\mathbf{X})=\sum_{x} p(x) \log \frac{1}{p(x)} \leq \log \left(\sum_{x} 1\right)=\log |\operatorname{range}(\mathbf{X})|
$$

- $H(\mathbf{X})=\log |\operatorname{range}(\mathbf{X})| \Longleftrightarrow \mathbf{X}$ is a uniform random variable
- $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X})$
- (Subadditivity) $H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right) \leq \sum H\left(\mathbf{X}_{i}\right)$

Basic Properties II

A few more useful properties:

Basic Properties II

A few more useful properties:

- If \mathbf{Y} determines \mathbf{Z} then $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X} \mid \mathbf{Z})$

Basic Properties II

A few more useful properties:

- If \mathbf{Y} determines \mathbf{Z} then $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X} \mid \mathbf{Z})$
- (Conditional Subadditivity) $H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \mid \mathbf{Y}\right) \leq \sum H\left(\mathbf{X}_{i} \mid \mathbf{Y}\right)$

Basic Properties II

A few more useful properties:

- If \mathbf{Y} determines \mathbf{Z} then $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X} \mid \mathbf{Z})$
- (Conditional Subadditivity) $H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \mid \mathbf{Y}\right) \leq \sum H\left(\mathbf{X}_{i} \mid \mathbf{Y}\right)$

For a random vector $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)$ and
$A \subset[n]=\{1,2, \ldots, n\}$, let $\mathbf{X}_{A}:=\left(\mathbf{X}_{i}: i \in A\right)$.

Basic Properties II

A few more useful properties:

- If \mathbf{Y} determines \mathbf{Z} then $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X} \mid \mathbf{Z})$
- (Conditional Subadditivity) $H\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \mid \mathbf{Y}\right) \leq \sum H\left(\mathbf{X}_{i} \mid \mathbf{Y}\right)$

For a random vector $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)$ and $A \subset[n]=\{1,2, \ldots, n\}$, let $\mathbf{X}_{A}:=\left(\mathbf{X}_{i}: i \in A\right)$.

Lemma (Shearer's Lemma)

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)$ be a random vector and \mathcal{A} a collection of subsets (possibly with repeats) of [n], with each element of $[n]$ contained in at least t members of \mathcal{A}. Then

$$
H(\mathbf{X}) \leq \frac{1}{t} \sum_{A \in \mathcal{A}} H\left(\mathbf{X}_{A}\right)
$$

Brégman's Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G. How many perfect matchings are there?

Brégman's Theorem

Suppose that we have a bipartite, N-vertex, d-regular graph G. How many perfect matchings are there?

Brégman's Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$
|\mathcal{M}| \leq(d!)^{N / 2 d}
$$

Brégman's Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$
|\mathcal{M}| \leq(d!)^{N / 2 d}
$$

Brégman's Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$
|\mathcal{M}| \leq(d!)^{N / 2 d}
$$

Remark 1: This theorem is sharp for the disjoint union of $N / 2 d$ copies of $K_{d, d}$.

Brégman's Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$
|\mathcal{M}| \leq(d!)^{N / 2 d}
$$

Remark 1: This theorem is sharp for the disjoint union of $N / 2 d$ copies of $K_{d, d}$.

Brégman's Theorem

Theorem (Brégman)

In a N-vertex, d-regular bipartite graph G, let \mathcal{M} be the set of perfect matchings of G. Then

$$
|\mathcal{M}| \leq(d!)^{N / 2 d}
$$

Remark 1: This theorem is sharp for the disjoint union of $N / 2 d$ copies of $K_{d, d}$.

Remark 2: The theorem can be interpreted as a theorem about permanents in $\{0,1\}$-matrices. It can also easily be generalized beyond the d-regular condition.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so $H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Pick random τ; look at
$\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N / 2))$ in this order.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so
$H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Pick random τ; look at $\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N / 2))$ in this order.

Fix i; define $N_{i}(\sigma, \tau)$ be the neighbors of i that are NOT already matched for the given σ and τ.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so
$H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Pick random τ; look at
$\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N / 2))$ in this order.
Fix i; define $N_{i}(\sigma, \tau)$ be the neighbors of i that are NOT already matched for the given σ and τ.
For fixed $\sigma, P_{\tau}\left(\left|N_{i}(\sigma, \tau)\right|=j\right)=\frac{1}{d}$ for $j=1, \ldots, d$.

Proof of Brégman's Theorem

Proof: (Radhakrishnan) Choose σ from \mathcal{M} uniformly, so
$H(\sigma)=\log (|\mathcal{M}|)$. Label the vertices on the left as $1,2, \ldots, N / 2$; so $\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(N / 2))$.

Pick random τ; look at
$\sigma(\tau(1)), \sigma(\tau(2)), \ldots, \sigma(\tau(N / 2))$ in this order.
Fix i; define $N_{i}(\sigma, \tau)$ be the neighbors of i that are NOT already matched for the given σ and τ.
For fixed $\sigma, P_{\tau}\left(\left|N_{i}(\sigma, \tau)\right|=j\right)=\frac{1}{d}$ for
$j=1, \ldots, d$.
$\Longrightarrow P_{\sigma, \tau}\left(\left|N_{i}(\sigma, \tau)\right|=j\right)=\frac{1}{d}$.

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\log |\mathcal{M}|=H(\sigma)=\sum_{i=1}^{N / 2} H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))
$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\log |\mathcal{M}|=H(\sigma)=\sum_{i=1}^{N / 2} E_{\tau}[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))]
$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\begin{aligned}
\log |\mathcal{M}|=H(\sigma) & =\sum_{i=1}^{N / 2} E_{\tau}[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))] \\
& \leq \sum_{i=1}^{N / 2} E_{\tau}\left[\sum_{j=1}^{d} P_{\sigma}\left(\left|N_{i}(\sigma, \tau)\right|=j\right) \log j\right]
\end{aligned}
$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\begin{aligned}
\log |\mathcal{M}|=H(\sigma) & =\sum_{i=1}^{N / 2} E_{\tau}[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))] \\
& \leq \sum_{i=1}^{N / 2} E_{\tau}\left[\sum_{j=1}^{d} P_{\sigma}\left(\left|N_{i}(\sigma, \tau)\right|=j\right) \log j\right] \\
& =\sum_{i=1}^{N / 2} \sum_{j=1}^{d} \frac{1}{d} \log j
\end{aligned}
$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\begin{aligned}
\log |\mathcal{M}|=H(\sigma) & =\sum_{i=1}^{N / 2} E_{\tau}[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))] \\
& \leq \sum_{i=1}^{N / 2} E_{\tau}\left[\sum_{j=1}^{d} P_{\sigma}\left(\left|N_{i}(\sigma, \tau)\right|=j\right) \log j\right] \\
& =\sum_{i=1}^{N / 2} \sum_{j=1}^{d} \frac{1}{d} \log j \\
& =\sum_{i=1}^{N / 2} \frac{1}{d} \log d!
\end{aligned}
$$

Proof of Brégman's Theorem

Putting all of this together, we have:

$$
\begin{aligned}
\log |\mathcal{M}|=H(\sigma) & =\sum_{i=1}^{N / 2} E_{\tau}[H(\sigma(\tau(i)) \mid \sigma(\tau(1)), \ldots, \sigma(\tau(i-1)))] \\
& \leq \sum_{i=1}^{N / 2} E_{\tau}\left[\sum_{j=1}^{d} P_{\sigma}\left(\left|N_{i}(\sigma, \tau)\right|=j\right) \log j\right] \\
& =\sum_{i=1}^{N / 2} \sum_{j=1}^{d} \frac{1}{d} \log j \\
& =\sum_{i=1}^{N / 2} \frac{1}{d} \log d! \\
& =\log (d!)^{N / 2 d}
\end{aligned}
$$

Questions

Question: Is this result true if we remove the word 'perfect'?

Conjecture

In an N-vertex, d-regular bipartite graph G, let $\mathcal{M}_{\text {tot }}(G)$ be the set of all possible matchings of G. Then

$$
\left|\mathcal{M}_{t o t}(G)\right| \leq\left|\mathcal{M}_{\text {tot }}\left(K_{d, d}\right)\right|^{N / 2 d}=\left(\sum_{i=0}^{d}\binom{d}{i}^{2} i!\right)^{N / 2 d}
$$

Questions

Question: Is this result true if we remove the word 'perfect'?

Conjecture

In an N-vertex, d-regular bipartite graph G, let $\mathcal{M}_{\text {tot }}(G)$ be the set of all possible matchings of G. Then

$$
\left|\mathcal{M}_{t o t}(G)\right| \leq\left|\mathcal{M}_{t o t}\left(K_{d, d}\right)\right|^{N / 2 d}=\left(\sum_{i=0}^{d}\binom{d}{i}^{2} i!\right)^{N / 2 d}
$$

Conjecture (Friedland)

In a N-vertex, d-regular bipartite graph G, let $\mathcal{M}_{t}(G)$ be the set of all matchings of size $t, t \in\{0,1, \ldots, N / 2\}$ in G. Then

$$
\left|\mathcal{M}_{t}(G)\right| \leq\left|\mathcal{M}_{t}\left(\frac{N}{2 d} K_{d, d}\right)\right|
$$

Graph Homomorphisms

Definition

Given graphs G and H (H possibly with loops), a function $f: V(G) \rightarrow V(H)$ is a graph homomorphism if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by $\operatorname{Hom}(G, H)$ the set of all graph homomorphisms from G to H.

Graph Homomorphisms

Definition

Given graphs G and H (H possibly with loops), a function $f: V(G) \rightarrow V(H)$ is a graph homomorphism if $x \sim y$ implies $f(x) \sim f(y)$ for all $x, y \in V(G)$. Denote by $\operatorname{Hom}(G, H)$ the set of all graph homomorphisms from G to H.

Example:
G
two H's:

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

This result can be extended to the following:

Results

Let $\mathcal{I}(G)$ denote the set of all independent sets in a graph G.

Theorem (Kahn)

For any N-vertex, d-regular bipartite graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

This result can be extended to the following:

Theorem (Galvin, Tetali)

For any N-vertex, d-regular bipartite graph G and any H (possibly with loops),

$$
|\operatorname{Hom}(G, H)| \leq\left|\operatorname{Hom}\left(K_{d, d}, H\right)\right|^{N / 2 d} .
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\log |\operatorname{Hom}(G, H)|=H(\mathbf{f})
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right)
\end{aligned}
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v}|\mathbf{f}|_{O}\right)
\end{aligned}
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)
\end{aligned}
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \\
& \leq \frac{1}{d} \sum_{v \in E} H\left(\mathbf{N}_{v}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)
\end{aligned}
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \\
& \leq \frac{1}{d} \sum_{v \in E} H\left(\mathbf{N}_{v}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \\
& =\frac{1}{d} \sum_{v \in E}\left[H\left(\mathbf{N}_{v}\right)+d H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)\right]
\end{aligned}
$$

Proof

Choose \mathbf{f} uniformly from $\operatorname{Hom}(G, H)$, so

$$
\begin{aligned}
\log |\operatorname{Hom}(G, H)| & =H(\mathbf{f}) \\
& =H\left(\left.\mathbf{f}\right|_{O}\right)+H\left(\left.\mathbf{f}\right|_{E}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v}|\mathbf{f}|_{O}\right) \\
& \leq H\left(\left.\mathbf{f}\right|_{O}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \\
& \leq \frac{1}{d} \sum_{v \in E} H\left(\mathbf{N}_{v}\right)+\sum_{v \in E} H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \\
& =\frac{1}{d} \sum_{v \in E}\left[H\left(\mathbf{N}_{v}\right)+d H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)\right]
\end{aligned}
$$

We've localized!

Proof

$$
\log |\operatorname{Hom}(G, H)| \leq \frac{1}{d} \sum_{v \in E}\left[H\left(\mathbf{N}_{v}\right)+d H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)\right]
$$

Proof

$$
\log |\operatorname{Hom}(G, H)| \leq \frac{1}{d} \sum_{v \in E}\left[H\left(\mathbf{N}_{v}\right)+d H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right)\right]
$$

From the definitions, the uniform bound, and an application of Jensen's formula, we have:

$$
H\left(\mathbf{N}_{v}\right)+d H\left(\mathbf{f}_{v} \mid \mathbf{N}_{v}\right) \leq \log \left|\operatorname{Hom}\left(K_{d, d}, H\right)\right|
$$

which completes the proof.

Related questions

Theorem (Zhao, 2009)
For any N-vertex, d-regular graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

Related questions

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d} .
$$

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$
|\operatorname{Hom}(G, H)| \leq\left|\operatorname{Hom}\left(K_{d, d}, H\right)\right|^{N / 2 d}
$$

Related questions

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$
|\operatorname{Hom}(G, H)| \leq\left|\operatorname{Hom}\left(K_{d, d}, H\right)\right|^{N / 2 d}
$$

This conjecture is FALSE! See H being two disjoint loops and $G=K_{3}$.

Related questions

Theorem (Zhao, 2009)

For any N-vertex, d-regular graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

Conjecture

For any N-vertex, d-regular graph G and any H (possibly with loops),

$$
|\operatorname{Hom}(G, H)| \leq\left|\operatorname{Hom}\left(K_{d, d}, H\right)\right|^{N / 2 d}
$$

This conjecture is FALSE! See H being two disjoint loops and $G=K_{3}$.

An interesting question is: For what H 's does this extension to general d-regular graphs hold?

Hard-Core Distribution

We now put a probability distribution on the set of all independent sets of G.

Hard-Core Distribution

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda>0$, the hard-core distribution with activity λ on $\mathcal{I}(G)$ is given by

$$
p_{\lambda}(I)=\frac{\lambda^{|I|}}{\sum\left\{\lambda^{\left|I^{\prime}\right|}: I^{\prime} \in \mathcal{I}(G)\right\}} \quad \text { for } I \in \mathcal{I}(G)
$$

Hard-Core Distribution

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda>0$, the hard-core distribution with activity λ on $\mathcal{I}(G)$ is given by

$$
p_{\lambda}(I)=\frac{\lambda^{|I|}}{\sum\left\{\lambda^{\left|I^{\prime}\right|}: I^{\prime} \in \mathcal{I}(G)\right\}} \quad \text { for } I \in \mathcal{I}(G)
$$

- Note: $\lambda=1$ gives the uniform distribution on $\mathcal{I}(G)$.

Hard-Core Distribution

We now put a probability distribution on the set of all independent sets of G.

Definition

For a finite graph G and $\lambda>0$, the hard-core distribution with activity λ on $\mathcal{I}(G)$ is given by

$$
p_{\lambda}(I)=\frac{\lambda^{|I|}}{\sum\left\{\lambda^{\left|I^{\prime}\right|}: I^{\prime} \in \mathcal{I}(G)\right\}} \quad \text { for } I \in \mathcal{I}(G)
$$

- Note: $\lambda=1$ gives the uniform distribution on $\mathcal{I}(G)$.
- We'll restrict our G to be N-vertex, d-regular, and bipartite.

Hard-Core Distribution

Now, how do you get a lot of independent sets in G ?

Hard-Core Distribution

Now, how do you get a lot of independent sets in G ?

- Let $\alpha_{\lambda}=\frac{\lambda}{2(1+\lambda)}$.

Hard-Core Distribution

Now, how do you get a lot of independent sets in G ?

- Let $\alpha_{\lambda}=\frac{\lambda}{2(1+\lambda)}$.
- if \mathbf{I} is an independent set chosen according to p_{λ}, let $p(v):=P(v \in \mathbf{I})$, and $\bar{p}=\sum_{v} p(v)(=E[|\mathbf{I}|] / N)$.

Theorem

Theorem (Kahn)

Fix $\lambda>0$, and let \mathbf{I} be chosen according to p_{λ} on G. Then

$$
\bar{p} \approx \alpha_{\lambda}
$$

and, furthermore, most independent sets have size close to $\alpha_{\lambda} N$.

Theorem

Theorem (Kahn)

Fix $\lambda>0$, and let \mathbf{I} be chosen according to p_{λ} on G. Then

$$
\bar{p} \approx \alpha_{\lambda}
$$

and, furthermore, most independent sets have size close to $\alpha_{\lambda} N$.

- Example: $\lambda=1$ is the uniform case, where $\alpha_{\lambda}=1 / 4$.

Theorem

Theorem (Kahn)

Fix $\lambda>0$, and let \mathbf{I} be chosen according to p_{λ} on G. Then

$$
\bar{p} \approx \alpha_{\lambda}
$$

and, furthermore, most independent sets have size close to $\alpha_{\lambda} N$.

- Example: $\lambda=1$ is the uniform case, where $\alpha_{\lambda}=1 / 4$.
- Entropy allows us to count independent sets of a fixed size.

Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn't differ far from
a) $1 / q$ (q even)
b) being in $[1 /(q+1), 1 /(q-1)]$ (q odd $)$.

Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn't differ far from

$$
\text { a) } 1 / q \text { (} q \text { even) }
$$

$$
\text { b) being in }[1 /(q+1), 1 /(q-1)] \text { (} q \text { odd). }
$$

- Why the even/odd difference?

Extension

Theorem (E., Galvin)

Given any N-vertex, d-regular bipartite G and a random (uniform) q coloring of G, the fraction of vertices with any given color doesn't differ far from

$$
\begin{aligned}
& \text { a) } 1 / q \text { (q even) } \\
& \text { b) being in }[1 /(q+1), 1 /(q-1)] \text { (} q \text { odd). }
\end{aligned}
$$

- Why the even/odd difference?
- Can the odd case be improved?

Extension

This idea can be extended to a weighted version:

Theorem (E., Galvin)

Given a fixed H and weights $\Lambda=\left\{\lambda_{h}\right\}_{h \in V(H)}$ on $V(H)$, and any N-vertex, d-regular bipartite graph G with some technical conditions, the number of vertices mapping to a fixed vertex of H is close to an ideal value.

Thanks

Thank you!

