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Abstract

Let r be a fixed non-negative integer. We provide a combinatorial proof of the
identity

n∑
i=0

(
i

r

)2

=

r∑
i=0

(
r

i

)2(
n + 1 + i

2r + 1

)
.

We do this by generalizing to two identities involving
∑n

i=0

(
i
r

)s
, for which we

provide combinatorial proofs. These two identities involve the generalized Eulerian
numbers and the generalized Delannoy numbers respectively.

In this note, we consider sums of powers of binomial coefficients. Recall the

classical identity
∑n

i=0

(
n
i

)2
=
(
2n
n

)
, which can be seen by partitioning lattice paths

from (0, 0) to (n, n) using right and up steps based on which element (i, n− i) they

pass through. Our first result is an identity involving the sum of the squares of the

binomial coefficients where the index of summation is over the top of the binomial

coefficient.

Theorem 1. Let r ≥ 0 be fixed. Then for all n ≥ r, we have

n∑
i=0

(
i

r

)2

=

r∑
k=0

(
r

k

)2(
n + 1 + k

2r + 1

)
.

Note that, in particular, we recover the well-known formulas (from using r = 0
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and r = 1, respectively)

n∑
i=0

1 =

n∑
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(
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)2

= n + 1,

and
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i=0

i2 =
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i=0

(
i

1

)2
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(
n + 1

3

)
+

(
n + 2

3

)
.

When r = 2 we obtain the following:

n∑
i=0

(
i

2

)2

=

(
n + 1

5

)
+ 4

(
n + 2

5

)
+

(
n + 3

5

)
.

The cases r = 3, 4, 5, 6, and 7 appear as sequences A086020, A086023, A086025,

A086027, and A086029 (respectively) in OEIS [6].

Instead of proving Theorem 1 directly, we generalize to sums of higher powers

of binomial coefficients, leaving Theorem 1 as a special case. This requires the

following definition.

Definition 2. Consider the multiset m = {1, ..., 1, 2, ..., 2, ..., s, ..., s} which contains

r copies of each element. Let
〈
m
k

〉
denote the number of permutations of this multiset

that has exactly k descents, meaning that there are exactly k places where entry i

is larger than entry i + 1.

The numbers
〈
m
k

〉
are explored in [2]. When s = 2, we can calculate

〈
m
k

〉
fairly

easily. Here we are considering the multiset {1, 1, ..., 1, 2, 2, ..., 2}. In this case, we

have
〈
m
k

〉
=
(
r
k

)2
. Indeed, we need to identify the k 1s and k 2s that will form the

descents. We then list the 1s until the first 1 in a descent, then the 2s through

the first descent, then the 1 in the first descent until prior to the second 1 chosen,

and so on. For example, if we take s = 4 and identify the second and third 1 and

the second and fourth 2, we have the multipermutation 12212211; notice that the

second and third 1 form descents with the second and fourth 2, respectively.

Theorem 3. Let r ≥ 0 and s ≥ 0 be fixed integers, and let m denote the multiset

{1, . . . , 1, 2, . . . , 2, . . . , s, . . . , s} that contains r copies of each element. Then for all

integers n ≥ r, we have

n∑
i=0

(
i

r

)s

=
∑
k≥0

〈
m

k

〉(
n + 1 + k

rs + 1

)
.

For the case r = 1 (and so
〈
s
k

〉
=
〈
m
k

〉
), Worpitzky’s identity (see e.g. [5]), which

states that

is =

s∑
k=0

〈
s

k

〉(
i + k

s

)
,
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can be used to obtain Theorem 3 in this special case. For a generalization of

Worpitzky’s identity for multipermutations, see [3]. Theorem 3 appears as a con-

sequence of the multipermutation version in [4]; our first goal is to provide a short

combinatorial proof of this result.

Proof of Theorem 3. The result holds when r = 0 or s = 0 by inspection (note that

we have
〈
m
0

〉
= 1 and

〈
m
k

〉
= 0 for all k > 0 when m is the empty set). We consider

s(n+1) people organized into n+1 families of size s. Label the families from the set

{1, 2, . . . , n + 1} and the members of a family with types a1, . . . , as; in particular,

each person has both a family label i and a member type aj . We count the number

of dinner parties that have a host family and include r members of each type, each

with smaller family label than that of the host family. The left-hand side conditions

on the label of the host family (being i + 1).

Next, we show that the right-hand side also counts the number of these dinner

parties. Here, we will consider dinner parties with attendees knowing their type,

and count the ways of assigning family labels to these attendees. To do this, we

consider rs guests (r of each type), and we will assign family labels for these rs

guests plus the label of the host family.

Put the rs people in a fixed order, and then count the number of descents present

in this ordering, in other words, the number of times that the mth person is of type

aj and the (m + 1)st person is of type ai for some i < j. Since we know that

there are exactly r people of each type, there are
〈
m
k

〉
orderings that have exactly k

descents. To the n+ 1 possible family labels we add k “descent” boxes, and choose

rs+ 1 of these n+ 1 + k things: the largest family label corresponds to the label of

the host family, the remaining labels are given to the attendees in increasing order,

and if the jth descent box is chosen, the people involved in the jth descent receive

the same family label.

Each such dinner party will be counted exactly once, since starting with a dinner

party we can simply have guests line up by increasing label (where members with the

same family label stand in decreasing order by member type), and each such labeling

of the rs + 1 ordered guests plus host family label corresponds to a dinner party.

Therefore the right-hand side also counts the number of such dinner parties.

Example 4. Suppose r = 4 and s = 2. When we consider the case of having 2

descents involving the second and third 1 with the second and fourth 2, we have the

multipermutation 12212211. Using only the first descent box leaves seven distinct

family labels, where the third smallest label is given to the second 1 and second 2.

If only the second descent box is used, then the third 1 and fourth 2 receive the

same label. If both descent boxes are used, there are six distinct labels remaining:

the second 1 and second 2 both receive the same label, and the third 1 and fourth

2 also receive the same label.



INTEGERS: 16 (2016) 4

We now move to our second identity. To mirror Theorem 1 and Theorem 3, we

first include the result for the sum of squares of binomial coefficients, but then prove

a generalized statement involving sth powers.

Theorem 5. Let r ≥ 0 be fixed. Then for all n ≥ r, we have

n∑
i=0

(
i

r

)2

=

2r∑
k=r

(
2(k − r)

k − r

)(
k

2r − k

)(
n + 1

k + 1

)
.

The generalized statement requires the following definition.

Definition 6. Fix integers k, r, s ≥ 0. A Delannoy path to (r, r, . . . , r) in the s-

dimensional integer lattice is a path from (0, 0, . . . , 0) to (r, r, . . . , r) so that each

step in the path increases some non-empty set of coordinates by 1. The number of

Delannoy paths to (r, r, . . . , r) in the s-dimensional integer lattice that use exactly

k steps is denoted dsk(r).

Theorem 7. Let r ≥ 0 and s ≥ 1 be fixed. Then for all n ≥ 0, we have

n∑
i=0

(
i

r

)s

=

sr∑
k=r

dsk(r)

(
n + 1

k + 1

)
.

When s = 2, we can find d2k(r) by noting that there must be 2r − k steps that

increase both coordinates (diagonal steps), and then among the 2k − 2r steps that

remain we choose k−r of them to correspond to increasing the first coordinate only

(horizontal steps). This shows that Theorem 7 indeed generalizes Theorem 5. For

larger values of s, the value dsk(r) can be computed using Inclusion-Exclusion [1,

Theorem 11]:

dsk(r) =

(
k

r

) k−r∑
i=0

(−1)i
(
k − r

i

)(
k − i

r

)s−1

.

Another formula for dsk(r) can be found in [7].

We now present a combinatorial proof of Theorem 7 that follows the same lines

as the proof of Theorem 3.

Proof of Theorem 7. As before, we consider s(n + 1) people organized into n + 1

families of size s. Label the families from the set {1, 2, . . . , n+ 1} and the members

of a family with types a1, . . . , as; in particular, each person has a family label i and

a member type aj . We count the number of dinner parties that have a host family

and include r members of each type, each with smaller family label than that of the

host family.

In light of the proof of Theorem 3, we only need to show that the right-hand side

counts the number of these dinner parties. In this direction, first choose the labels

that will be present at the party. The largest family label is clearly that of the host
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family. Then we condition on seeing exactly k labels smaller than the label of the

host family.

Each label corresponds to taking a Delannoy step in the following way. First, let

member type ai correspond to the ith coordinate in the s-dimensional lattice. Then

the set of member types with label ` at the party corresponds to the coordinates

to change when making the next Delannoy step. The k steps taken correspond to

the k family labels, and after all k steps are taken there are exactly r guests of each

member type.

For example, when s = 2 and r = 2, we have

n∑
i=0

(
i

2

)2

= 6

(
n + 1

5

)
+ 6

(
n + 1

4

)
+

(
n + 1

3

)
.

Notice that we may obtain the previous formula for
∑n

i=0

(
i
2

)2
by iteratively apply-

ing Pascal’s identity.
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