

Reversible Peg Solitaire on Graphs

John Engbers

(joint work with Christopher Stocker)
Department of Mathematics, Statistics and Computer Science
Marquette University
MIGHTY LVI — IPFW, Fort Wayne, IN

October 4, 2014

Peg Solitaire

What is it?

A common single-player game played around the world:

Peg Solitaire

What is it?

A common single-player game played around the world:

Goal: make checkers jumps until a single peg remains.

Peg Solitaire

What is it?

A common single-player game played around the world:

Goal: make checkers jumps until a single peg remains. Spoiler Alert!

Peg Solitaire

To solve peg solitaire:

Think in terms of 'packaged' moves.

Eg-No-Ra-Moose

A variation on the theme is found at Cracker Barrel restaurants.

Eg-No-Ra-Moose

A variation on the theme is found at Cracker Barrel restaurants.

"Leave only one - you're genius...leave four or more'n you're just plain 'eg-no-ra-moose'."

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_{6} is solvable since some initial hole reduces to a single peg

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_{6} is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

$$
P_{2 n}, C_{2 n}, K_{n}, K_{m, n}(m, n \geq 2), D S(L, R)(|L-R| \leq 1), \ldots
$$

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_{6} is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

$$
P_{2 n}, C_{2 n}, K_{n}, K_{m, n}(m, n \geq 2), D S(L, R)(|L-R| \leq 1), \ldots
$$

Open: Which graphs are solvable in Peg Solitaire for graphs? (Seems to be difficult - very open for general trees)

Peg Solitaire on Graphs

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_{6} is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

$$
P_{2 n}, C_{2 n}, K_{n}, K_{m, n}(m, n \geq 2), D S(L, R)(|L-R| \leq 1), \ldots
$$

Open: Which graphs are solvable in Peg Solitaire for graphs? (Seems to be difficult - very open for general trees)

Construct Solvable Graphs: [Beeler, Gray, Hoilman 2012] Start with one peg, one hole. Reverse the game; adding pegs/holes.

Reverse moves

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." - Leibniz¹.

[^0]
Reverse moves

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." - Leibniz¹.

Why not both?!?

[^1]
Reverse moves

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." - Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

[^2]
Reverse moves

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." - Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

[^3]
Reverse moves

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." - Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

"Reversible Peg Solitaire on graphs"

[^4]
Reversible Peg Solitaire

Question: Which graphs are solvable in reversible peg solitaire?

Reversible Peg Solitaire

Question: Which graphs are solvable in reversible peg solitaire?
Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1, n-1}$ is not solvable for $n \geq 4$.)

Reversible Peg Solitaire

Question: Which graphs are solvable in reversible peg solitaire?
Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1, n-1}$ is not solvable for $n \geq 4$.)

Theorem (E., Stocker 2014+)
$P_{2 k}, C_{2 k}, P_{3 \ell}$, and $C_{3 \ell}$ are solvable.

Reversible Peg Solitaire

Question: Which graphs are solvable in reversible peg solitaire?
Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1, n-1}$ is not solvable for $n \geq 4$.)

Theorem (E., Stocker 2014+)
$P_{2 k}, C_{2 k}, P_{3 \ell}$, and $C_{3 \ell}$ are solvable.

Conjecture

P_{n} and C_{n} are not solvable if n is not divisible by 2 or 3 .
(Confirmed computationally for $n \leq 25$)

Idea of Proof

Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable.

Idea of Proof

Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable.

Package move: The P_{4} move:

Idea of Proof

Theorem (E., Stocker 2014+)
Any connected $G \neq K_{1, n-1}$ that contains a vertex of degree at least 3 is solvable.

Package move: The P_{4} move:

Gadget: Claw with subdivided edge.

Idea of Proof

Lemma

Columns: states obtained by jumps and unjumps within our gadget.

Class A	Class B	Class C	Class D	Class E	Class F
a ${ }^{\text {g }}$-000	C 3 soos	abd 3 -	ce 300	abcde 3...	Somo
b 2000	ab 3000				
d ${ }_{5} \times$	ad 3				
$e{ }^{\text {bobe }}$	ae 3 soo				
ac 3	bd 5				
bc $3+\infty$	be ${ }^{\text {sona }}$				
cd ${ }^{\text {cou }}$	de 30.0				
abe 3	$a b c 3000$				
ade $3 .$.	acd 3				
bde so..	ace 3-0.				
abcd	bcd 8.				
abce 3	bce 8-0.				
acde 3...	cde $3 .$.				
bcde 3...	abde $3 .$.				

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.
Step 2: Reduce gadget to equivalent state (think single peg)

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.
Step 2: Reduce gadget to equivalent state (think single peg)

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.
Step 2: Reduce gadget to equivalent state (think single peg)
Step 3: Iteratively bring outside pegs in (P_{4} move), preserving the good classes (case analysis)

Idea of Proof

Gadget:

Step 1: Use P_{4} move to bring hole to gadget.
Step 2: Reduce gadget to equivalent state (think single peg)
Step 3: Iteratively bring outside pegs in (P_{4} move), preserving the good classes (case analysis)

Final Remarks

Other Results:

- $P_{2 n}, C_{2 n}, P_{3 m}, C_{3 m}$: Provide an algorithm.

Final Remarks

Other Results:

- $P_{2 n}, C_{2 n}, P_{3 m}, C_{3 m}$: Provide an algorithm.

Open Questions:

- Show that P_{n}, C_{n} are not solvable (n not divisible by 2,3)

Final Remarks

Other Results:

- $P_{2 n}, C_{2 n}, P_{3 m}, C_{3 m}$: Provide an algorithm.

Open Questions:

- Show that P_{n}, C_{n} are not solvable (n not divisible by 2,3)
- Given solvable G, find the minimum number of unjumps needed.

Final Remarks

Other Results:

- $P_{2 n}, C_{2 n}, P_{3 m}, C_{3 m}$: Provide an algorithm.

Open Questions:

- Show that P_{n}, C_{n} are not solvable (n not divisible by 2,3)
- Given solvable G, find the minimum number of unjumps needed.
- Fix k. Which graphs are solvable using $\leq k$ unjumps?

Final Remarks

Other Results:

- $P_{2 n}, C_{2 n}, P_{3 m}, C_{3 m}$: Provide an algorithm.

Open Questions:

- Show that P_{n}, C_{n} are not solvable (n not divisible by 2,3)
- Given solvable G, find the minimum number of unjumps needed.
- Fix k. Which graphs are solvable using $\leq k$ unjumps?

Thank You

Slides available on my webpage:
http://www.mscs.mu.edu/~engbers/

[^0]: ${ }^{1}$ From Berlekamp, Conway, and Guy, Winning Ways for your Mathematical Plays Vol. 4

[^1]: ${ }^{1}$ From Berlekamp, Conway, and Guy, Winning Ways for your Mathematical Plays Vol. 4

[^2]: ${ }^{1}$ From Berlekamp, Conway, and Guy, Winning Ways for your Mathematical Plays Vol. 4

[^3]: ${ }^{1}$ From Berlekamp, Conway, and Guy, Winning Ways for your Mathematical Plays Vol. 4

[^4]: ${ }^{1}$ From Berlekamp, Conway, and Guy, Winning Ways for your Mathematical Plays Vol. 4

