$\bullet - \bullet - \circ \quad \longrightarrow \quad \circ - \circ - \bullet$

Reversible Peg Solitaire on Graphs

John Engbers

(joint work with Christopher Stocker)

Department of Mathematics, Statistics and Computer Science Marquette University

MIGHTY LVI - IPFW, Fort Wayne, IN

October 4, 2014

What is it?

A common single-player game played around the world:

• • • • • • • • • • • • •

What is it?

A common single-player game played around the world:

Goal: make checkers jumps until a single peg remains.

John Engbers (Marquette University)

Reversible Peg Solitaire on Graphs

▲ 同 ▶ → 三 ▶

What is it?

A common single-player game played around the world:

Goal: make checkers jumps until a single peg remains. Spoiler Alert!

John Engbers (Marquette University)

Reversible Peg Solitaire on Graphs

October 2014 2 / 11

To solve peg solitaire:

Think in terms of 'packaged' moves.

John Engbers (Marquette University)

Reversible Peg Solitaire on Graphs

э

イロト イヨト イヨト イヨト

Eg-No-Ra-Moose

A variation on the theme is found at Cracker Barrel restaurants.

Eg-No-Ra-Moose

A variation on the theme is found at Cracker Barrel restaurants.

"Leave only one - you're genius...leave four or more'n you're just plain 'eg-no-ra-moose'."

A (1) > A (2) > A

Now: Play Peg Solitaire on a connected graph (lose geometry)

A (1) > A (2) > A

Now: Play Peg Solitaire on a connected graph (lose geometry)

• • • • • • • • • • • • •

Now: Play Peg Solitaire on a connected graph (lose geometry)

• • • • • • • • • • • •

Now: Play Peg Solitaire on a connected graph (lose geometry)

• • • • • • • • • • • •

Now: Play Peg Solitaire on a connected graph (lose geometry)

• • • • • • • • • • • •

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_6 is solvable since some initial hole reduces to a single peg

4 E 6 4

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: *P*₆ is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

 $P_{2n}, C_{2n}, K_n, K_{m,n} (m, n \ge 2), DS(L, R) (|L - R| \le 1), ...$

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: *P*₆ is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

$$P_{2n}, C_{2n}, K_n, K_{m,n} (m, n \ge 2), DS(L, R) (|L - R| \le 1), ...$$

Open: Which graphs are solvable in Peg Solitaire for graphs? (Seems to be difficult - very open for general trees)

< ロ > < 同 > < 回 > < 回 >

Now: Play Peg Solitaire on a connected graph (lose geometry)

Terminology: P_6 is solvable since some initial hole reduces to a single peg

Question: Which graphs are solvable in peg solitaire? [Beeler Hoilman, 2011]

 $P_{2n}, C_{2n}, K_n, K_{m,n} (m, n \ge 2), DS(L, R) (|L - R| \le 1), ...$

Open: Which graphs are solvable in Peg Solitaire for graphs? (Seems to be difficult - very open for general trees)

Construct Solvable Graphs: [Beeler, Gray, Hoilman 2012] Start with one peg, one hole. Reverse the game; adding pegs/holes.

John Engbers (Marquette University)

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." — Leibniz¹.

¹From Berlekamp, Conway, and Guy, *Winning Ways for your Mathematical Plays Vol. 4*

John Engbers (Marquette University)

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." — Leibniz¹.

Why not both?!?

¹From Berlekamp, Conway, and Guy, *Winning Ways for your Mathematical Plays Vol. 4*

John Engbers (Marquette University)

Reversible Peg Solitaire on Graphs

October 2014 6 / 11

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." — Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

¹From Berlekamp, Conway, and Guy, *Winning Ways for your Mathematical Plays Vol. 4*

John Engbers (Marquette University)

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." — Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

$$\bullet - \bullet - \circ \rightarrow \circ - \circ - \bullet$$

¹From Berlekamp, Conway, and Guy, *Winning Ways for your Mathematical Plays Vol. 4*

John Engbers (Marquette University)

"The game called Solitaire pleases me much. I take it in reverse order. That is to say that instead of making a configuration according to the rules of the game, which is to jump to an empty place and remove the piece over which one has jumped, I thought it was better to reconstruct what had been demolished, by filling an empty hole over which one has leaped." — Leibniz¹.

Why not both?!?

Question: What happens if you allow reverse moves in peg solitaire?

"Reversible Peg Solitaire on graphs"

¹From Berlekamp, Conway, and Guy, *Winning Ways for your Mathematical Plays Vol. 4*

John Engbers (Marquette University)

Question: Which graphs are solvable in reversible peg solitaire?

< ロ > < 同 > < 回 > < 回 >

Question: Which graphs are solvable in reversible peg solitaire?

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1,n-1}$ is not solvable for $n \ge 4$.)

Question: Which graphs are solvable in reversible peg solitaire?

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1,n-1}$ is not solvable for $n \ge 4$.)

Theorem (E., Stocker 2014+)

 P_{2k} , C_{2k} , $P_{3\ell}$, and $C_{3\ell}$ are solvable.

A (10) A (10) A (10)

Question: Which graphs are solvable in reversible peg solitaire?

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable. ($K_{1,n-1}$ is not solvable for $n \ge 4$.)

Theorem (E., Stocker 2014+)

 P_{2k} , C_{2k} , $P_{3\ell}$, and $C_{3\ell}$ are solvable.

Conjecture

 P_n and C_n are not solvable if n is not divisible by 2 or 3.

(Confirmed computationally for $n \leq 25$)

< ロ > < 同 > < 回 > < 回 >

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable.

< ロ > < 同 > < 回 > < 回 >

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable.

Package move: The P₄ move:

Theorem (E., Stocker 2014+)

Any connected $G \neq K_{1,n-1}$ that contains a vertex of degree at least 3 is solvable.

Package move: The P₄ move:

Gadget: Claw with subdivided edge.

Lemma

Columns: states obtained by jumps and unjumps within our gadget.

Class A	Class B	Class C	Class D	Class E	Class F
a 🎾	<i>C</i> ≫⊷⊸	abd 洒	<i>ce ≽</i> ⊶⊶	abcde 油	~~~
b ∽ 🗝	ab 🞾				
d ≫⊷	ad 泽				
e >~~•	ae				
ac 🎾	bd 🐎				
bc >	be 🕍				
cd >+	de 💝 🕶				
abe ⊶	abc 🍋				
ade 泽	acd 洒				
bde 🐎 🕶	ace 泽				
abcd >	bcd ≻⊷				
abce 洒	bce ⊶				
acde 泽	cde >+++				
bcde ≻⊶	abde ⊶				

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

John Engbers (Marquette University) Reversible Peg Solitaire on C

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

A (10) > A (10) > A (10)

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

John Engbers (Marquette University) Reversible Peg Solitaire on G

A (10) > A (10) > A (10)

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

Step 2: Reduce gadget to equivalent state (think single peg)

不同 トイモトイモ

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

Step 2: Reduce gadget to equivalent state (think single peg)

不同 いんきいんき

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

Step 2: Reduce gadget to equivalent state (think single peg)

Step 3: Iteratively bring outside pegs in (P_4 move), preserving the good classes (case analysis)

イロト イポト イラト イラ

Gadget:

Step 1: Use *P*₄ move to bring hole to gadget.

Step 2: Reduce gadget to equivalent state (think single peg)

Step 3: Iteratively bring outside pegs in (P_4 move), preserving the good classes (case analysis)

イロト イポト イラト イラ

Other Results:

• *P*_{2n}, *C*_{2n}, *P*_{3m}, *C*_{3m}: Provide an algorithm.

イロト イポト イヨト イヨト

Other Results:

• *P*_{2n}, *C*_{2n}, *P*_{3m}, *C*_{3m}: Provide an algorithm.

Open Questions:

• Show that P_n , C_n are not solvable (*n* not divisible by 2, 3)

A (10) > A (10) > A (10)

Other Results:

• *P*_{2n}, *C*_{2n}, *P*_{3m}, *C*_{3m}: Provide an algorithm.

Open Questions:

- Show that P_n , C_n are not solvable (*n* not divisible by 2, 3)
- Given solvable *G*, find the minimum number of unjumps needed.

(4) (3) (4) (4) (4)

Other Results:

• P_{2n} , C_{2n} , P_{3m} , C_{3m} : Provide an algorithm.

Open Questions:

- Show that P_n , C_n are not solvable (*n* not divisible by 2, 3)
- Given solvable *G*, find the minimum number of unjumps needed.
- Fix k. Which graphs are solvable using $\leq k$ unjumps?

Other Results:

• P_{2n} , C_{2n} , P_{3m} , C_{3m} : Provide an algorithm.

Open Questions:

- Show that P_n , C_n are not solvable (*n* not divisible by 2, 3)
- Given solvable *G*, find the minimum number of unjumps needed.
- Fix *k*. Which graphs are solvable using ≤ *k* unjumps?

Thank You

Slides available on my webpage:

http://www.mscs.mu.edu/~engbers/

周レイモレイモ