Extremal H-colorings of trees

John Engbers* David Galvin

Department of Mathematics, Statistics and Computer Science
Marquette University

2014 MathFest — Portland, OR

August 8, 2014
An extremal question

Graph homomorphism (H-coloring):

$G :$

$H = H_{\text{ind}} :$

$H = H_{\text{ind}}$
An extremal question
Graph homomorphism (H-coloring):

$$G: \quad H = H_{\text{ind}}:$$

Examples: independent sets, proper q-colorings, Widom-Rowlinson

Notation: $\text{hom}(G, H) = \text{number of } H\text{-colorings of } G.$
An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets,
An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Example:

G:

$H = K_q$:

Examples: independent sets, proper q-colorings,
An extremal question

Graph homomorphism (H-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, Widom-Rowlinson
An extremal question

Graph homomorphism \((H\text{-coloring})\): A map from \(V(G)\) to \(V(H)\) that preserves edge adjacency.

\[G : \quad H = H_{\text{WR}} : \]

Examples: independent sets, proper \(q\)-colorings, Widom-Rowlinson

Notation: \(\text{hom}(G, H) = \text{number of } H\text{-colorings of } G\).
An extremal question

Graph homomorphism (*H*-coloring): A map from $V(G)$ to $V(H)$ that preserves edge adjacency.

Examples: independent sets, proper q-colorings, Widom-Rowlinson

Notation: $\text{hom}(G, H) =$ number of *H*-colorings of G.

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes/minimizes $\text{hom}(G, H)$?
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali; Zhao, Galvin; E.; (E., Galvin) Sidorenko)

- $\mathcal{G} = n$-vertex m-edge graphs: **Few H**
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali)

- $\mathcal{G} = n$-vertex m-edge graphs: Few H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs: All H
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali; Zhao, Galvin)

- $\mathcal{G} = n$-vertex m-edge graphs, few H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs, all H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs, lots of H
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali; Zhao, Galvin; E.)

- $\mathcal{G} = n$-vertex m-edge graphs: Few H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs: All H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs: Lots of H
- $\mathcal{G} = n$-vertex graphs with minimum degree δ: Several H
Various families

Question
Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali; Zhao, Galvin; E.)

- $\mathcal{G} = n$-vertex m-edge graphs Few H ← Open questions
- $\mathcal{G} = n$-vertex d-regular bipartite graphs All H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs Lots of H ← Open questions
- $\mathcal{G} = n$-vertex graphs with minimum degree δ Several H ← Open questions
Various families

Question

Fix H. Given a family of graphs \mathcal{G}, which $G \in \mathcal{G}$ maximizes $\text{hom}(G, H)$?

Theorem (Cutler-Radcliffe, Loh-Pikhurko-Sudakov; Kahn, Galvin-Tetali; Zhao, Galvin; E.; (E., Galvin) Sidorenko)

- $\mathcal{G} = n$-vertex m-edge graphs: Few $H \leftarrow$ Open questions
- $\mathcal{G} = n$-vertex d-regular bipartite graphs: All H
- $\mathcal{G} = n$-vertex d-regular bipartite graphs: Lots of $H \leftarrow$ Open questions
- $\mathcal{G} = n$-vertex graphs with minimum degree δ: Several $H \leftarrow$ Open questions
- $\mathcal{G} = n$-vertex trees: All H
Trees

Question

Fix H. Which n-vertex tree T maximizes $\text{hom}(T, H)$?
Fix H. Which n-vertex tree T maximizes $\text{hom}(T, H)$?

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

However.....(New to me, May 2014)
Question

Fix H. Which n-vertex tree T maximizes $\text{hom}(T, H)$?

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

However.....(New to me, May 2014)

Theorem (Sidorenko 1994)

Fix H. For any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$
What next?

The star $K_{1,n-1}$ maximizes # of H-colorings in trees. What minimizes?

Conjecture

Fix H. For any n-vertex tree T,

$$\text{hom}(P_n, H) \leq \text{hom}(T, H).$$
What next?
The star $K_{1,n-1}$ maximizes # of H-colorings in trees. What minimizes?

Conjecture

Fix H. For any n-vertex tree T,

\[\text{hom}(P_n, H) \leq \text{hom}(T, H). \]

FALSE! (Even for $n = 7$)
What next?
The star $K_{1,n-1}$ maximizes # of H-colorings in trees. What minimizes?

Conjecture

Fix H. For any n-vertex tree T,

$$\text{hom}(P_n, H) \leq \text{hom}(T, H).$$

FALSE! (Even for $n = 7$)

Theorem (E., Galvin 2014)

For a certain class of H, for any n-vertex tree T we have

$$\text{hom}(P_n, H) \leq \text{hom}(T, H).$$

(This class includes the Widom-Rowlinson graph H_{WR} and the independent set graph H_{ind}.)
What next?
The star $K_{1,n-1}$ maximizes # of H-colorings in trees. What minimizes?

Conjecture

Fix H. For any n-vertex tree T,

$$\text{hom}(P_n, H) \leq \text{hom}(T, H).$$

FALSE! (Even for $n = 7$) ← Open question — what H is it true for?

Theorem (E., Galvin 2014)

For a certain class of H, for any n-vertex tree T we have

$$\text{hom}(P_n, H) \leq \text{hom}(T, H).$$

(This class includes the Widom-Rowlinson graph H_{WR} and the independent set graph H_{ind}.)
What next?

Theorem (E., Galvin 2014)

Fix H. *For n large and any n-vertex tree* T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

See what else your proof can do!
What next?

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

See what else your proof can do!

Theorem (E., Galvin 2014)

Fix a non-regular H. For n large and any 2-connected graph G,

$$\text{hom}(G, H) \leq \text{hom}(K_{2,n-2}, H).$$
What next?

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

See what else your proof can do!

Theorem (E., Galvin 2014)

Fix a non-regular H. For n large and any 2-connected graph G,

$$\text{hom}(G, H) \leq \text{hom}(K_{2,n-2}, H).$$

$K_{2,n-2}$:

```
  o--o--o--o--o
     |    |
```

Question: Does $K_{k,n-k}$ maximize the H-colorings among all k-connected graphs (for most H)?
Idea of proof

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

Idea: Stability
Idea of proof

Theorem (E., Galvin 2014)

Fix H. For n large and any n-vertex tree T,

$$\text{hom}(T, H) \leq \text{hom}(K_{1,n-1}, H).$$

Idea: Stability

Step 0. Note $\text{hom}(K_{1,n-1}, H_{\text{WR}}) \geq 3^{n-1}$

Step 1. Extremal tree must be structurally close to $K_{1,n-1}$

Step 2. Small blemishes added to star can’t be extremal
Idea of proof

Step 0. $\text{hom}(K_{1,n-1}, H) \geq 3^{n-1}$
Idea of proof

Step 0. $\text{hom}(K_{1,n-1}, H) \geq 3^{n-1}$

Step 1. Show that an extremal tree can’t contain a long path.
Idea of proof

Step 0. $\text{hom}(K_{1,n-1}, H) \geq 3^{n-1}$

Step 1. Show that an extremal tree can’t contain a long path.

\[
A(H) = A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]
Idea of proof

Step 0. \(\text{hom}(K_{1,n-1}, H) \geq 3^{n-1} \)

Step 1. Show that an extremal tree can’t contain a long path.

\[A(H) = A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]

\((A^k)_{ij} \) = \# colorings of \(P_{k+1} \) with endpoints colored \(i,j \)
Idea of proof

Step 0. \(\text{hom}(K_{1,n-1}, H) \geq 3^{n-1} \)

Step 1. Show that an extremal tree can’t contain a long path.

\[
A(H) = A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]

- \((A^k)_{ij} \) = # colorings of \(P_{k+1} \) with endpoints colored \(i,j \)
- Perron-Frobenius: largest eigenvalue is \(\lambda < 3 \) (\(H \) not regular)
Idea of proof

Step 0. \(\text{hom}(K_{1,n-1}, H) \geq 3^{n-1} \)

Step 1. Show that an extremal tree can’t contain a long path.

\[
A(H) = A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{bmatrix}
\]

- \((A^k)_{ij} = \#\text{ colorings of } P_{k+1} \text{ with endpoints colored } i,j\)
- Perron-Frobenius: largest eigenvalue is \(\lambda < 3 \) (H not regular)
- \(\text{hom}(T, H) \leq c\lambda^k 3^{n-k} < 3^{n-1} \) (for constant \(k \), uses \(n > c_H \))
Idea of proof

Step 2: Any non-star with no long path has fewer H-colorings
Idea of proof

Step 2: Any non-star with no long path has fewer H-colorings.
No k-path implies there is a vertex with at least $\log n$ neighbors.
If not a star:

\[
\begin{align*}
\{ \circ, \ldots, \circ \} & \geq \log n \\
\end{align*}
\]
Idea of proof

Step 2: Any non-star with no long path has fewer \(H \)-colorings.

No \(k \)-path implies there is a vertex with at least \(\log n \) neighbors.

If not a star:

\[
\begin{align*}
\{ & v, \ldots, \circ, \circ \} \geq \log n \\
\end{align*}
\]

Number of colorings where:

- \(v \) has color \(w \); \(d(w) < 3 \) \(\implies \) \(< c2^{\log n 3^n - \log n - 1} \leq cn \frac{-1}{3} 3^n = o(1)3^n \)
Idea of proof

Step 2: Any non-star with no long path has fewer H-colorings

No k-path implies there is a vertex with at least $\log n$ neighbors.

If not a star:

$$\{ \ldots \} \geq \log n$$

Number of colorings where:

- v has color w; $d(w) < 3 \implies < c2^{\log n}3^{n-\log n-1} \leq cn^{-1}3^n = o(1)3^n$
- v has color w; $d(w) = 3$: constant in leading term dampened if not $K_{1,n-1}$
Thank you!

Slides available on my homepage:
http://www.mscs.mu.edu/~engbers/