Graph theory - to the extreme!

John Engbers

Marquette University
Department of Mathematics, Statistics and Computer Science

Calvin College Colloquium
 April 17, 2014

Graph theory - basics

Graph G : set of vertices $V(G)$ and a set edges $E(G)$.

Note: Our graphs will be finite with no loops or multi-edges.

Graph theory - basics

Graph G : set of vertices $V(G)$ and a set edges $E(G)$.

G:

Note: Our graphs will be finite with no loops or multi-edges.
Graphs represent objects/relationships
Examples: Facebook pages/friendships; countries/border-sharing; Calvin courses/student taking both courses

Graph theory - basics

Graph G : set of vertices $V(G)$ and a set edges $E(G)$.
G:

Note: Our graphs will be finite with no loops or multi-edges.
Graphs represent objects/relationships
Examples: Facebook pages/friendships; countries/border-sharing; Calvin courses/student taking both courses

NOT: Graph of $y=f(x)=x^{2}$:

Main Characters/Examples

Complete graph:

Main Characters/Examples

Complete graph:
Complete bipartite graph:

Main Characters/Examples

Complete graph:
Complete bipartite graph:

Main Characters/Examples

Complete graph:

Empty graph:

Main technique - Counting!

Main technique - Counting!

Binomial coefficients: If I have n objects, then there are

$$
\binom{n}{t}=\frac{n!}{t!(n-t)!}
$$

different ways of selecting the t objects.

Main technique - Counting!

Binomial coefficients: If I have n objects, then there are

$$
\binom{n}{t}=\frac{n!}{t!(n-t)!}
$$

different ways of selecting the t objects.
Example: Given a pool of 23 math majors, there are

$$
\binom{23}{3}=\frac{23!}{3!20!}=1771
$$

different 3-person committees that can be formed.

Main technique - Counting!

Shirts-pants-shoes idea: Suppose that I have 3 different shirts, 5 different pairs of pants, and 8 different pairs of shoes. How many different outfits can I wear?

Main technique - Counting!

Shirts-pants-shoes idea: Suppose that I have 3 different shirts, 5 different pairs of pants, and 8 different pairs of shoes. How many different outfits can I wear?

Answer: $3 \cdot 5 \cdot 8=120$ different outfits.

Extremal graph theory

Extremal graph theory:

Extremal graph theory

Extremal graph theory:

Tries to figure out the "most extreme" graph from a family of graphs.

Extremal graph theory

Question (General question)
Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n}=\{$ all possible graphs on n vertices $\}$. [insert something here] = number of edges.

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n}=\{$ all possible graphs on n vertices $\}$. [insert something here] = number of edges.
Solution: For $n=4$:

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n}=\{$ all possible graphs on n vertices $\}$. [insert something here] = number of edges.
Solution: For $n=4$:

Empty Graph:

Extremal graph theory

Question (General question)
Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest linsert something here]?

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n, r}=\left\{\right.$ all possible graphs on n vertices that don't contain $\left.K_{r}\right\}$. [insert something here] = number of edges.

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n, r}=\left\{\right.$ all possible graphs on n vertices that don't contain $\left.K_{r}\right\}$. [insert something here] = number of edges.
Solution (Turán 1941): $n=7$ with no K_{4} :

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest [insert something here]?

Example:

$\mathcal{G}=\mathcal{G}_{n, r}=\left\{\right.$ all possible graphs on n vertices that don't contain $\left.K_{r}\right\}$. [insert something here] = number of edges.
Solution (Turán 1941): $n=7$ with no K_{4} :

Detour: graph theory — slightly beyond basics

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

Detour: graph theory — slightly beyond basics

 Independent set (of vertices): A set of vertices which are pairwise non-adjacent.
$i_{t}(G)$: Number of independent sets with size t in $G(t \in\{0,1, \ldots, n\})$.

Detour: graph theory — slightly beyond basics

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

$i_{t}(G)$: Number of independent sets with size t in $G(t \in\{0,1, \ldots, n\})$.
In the example above,
$i_{0}(G)=1, \quad i_{1}(G)=5, \quad i_{2}(G)=6, \quad i_{3}(G)=4, \quad i_{4}(G)=1, \quad i_{5}(G)=0$

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Example:

$$
\begin{aligned}
& \mathcal{G}=\mathcal{G}_{n}=\{\text { all graphs on } n \text { vertices }\} . \\
& \text { [insert something here] }=i_{t}(G) \text { for each } t=0,1,2, \ldots, n
\end{aligned}
$$

Extremal graph theory

Question (General question)

Fix a family \mathcal{G} of graphs. Out of all of the graphs in \mathcal{G}, which has the largest/smallest [insert something here]?

Example:

$$
\begin{aligned}
& \mathcal{G}=\mathcal{G}_{n}=\{\text { all graphs on } n \text { vertices }\} . \\
& \text { [insert something here] }=i_{t}(G) \text { for each } t=0,1,2, \ldots, n
\end{aligned}
$$

Solution: For $n=4$,

Extremal graph theory

Question (Today's question - different family)
Fix a family \mathcal{G} of graphs. Out of all the graphs in \mathcal{G}, which has the largest value of $i_{t}(G)$ for each t ?

Intuition: fewer edges implies more independent sets of a fixed size.

Extremal graph theory

Question (Today's question - different family)
Fix a family \mathcal{G} of graphs. Out of all the graphs in \mathcal{G}, which has the largest value of $i_{t}(G)$ for each t ?

Intuition: fewer edges implies more independent sets of a fixed size.

- $\mathcal{G}=\{$ all graphs with n vertices and m edges $\}$.

Extremal graph theory

Question (Today's question - different family)

Fix a family \mathcal{G} of graphs. Out of all the graphs in \mathcal{G}, which has the largest value of $i_{t}(G)$ for each t ?

Intuition: fewer edges implies more independent sets of a fixed size.

- $\mathcal{G}=\{$ all graphs with n vertices and m edges $\}$.
- (Cutler, Radcliffe 2011) Lex graph maximizes $i_{t}(G)$ for all t.

Extremal graph theory

Question (Today's question - different family)

Fix a family \mathcal{G} of graphs. Out of all the graphs in \mathcal{G}, which has the largest value of $i_{t}(G)$ for each t ?

Intuition: fewer edges implies more independent sets of a fixed size.

- $\mathcal{G}=\{$ all graphs with n vertices and m edges $\}$.
- (Cutler, Radcliffe 2011) Lex graph maximizes $i_{t}(G)$ for all t.

Lex:

	$a b$ $a c$ $a d$ $b c$
$a \bigcirc$	$b d$
$n=4, m=4$	$c d$

Extremal graph theory

Question (Today's question - different family)

Fix a family \mathcal{G} of graphs. Out of all the graphs in \mathcal{G}, which has the largest value of $i_{t}(G)$ for each t ?

Intuition: fewer edges implies more independent sets of a fixed size.

- $\mathcal{G}=\{$ all graphs with n vertices and m edges $\}$.
- (Cutler, Radcliffe 2011) Lex graph maximizes $i_{t}(G)$ for all t.

Lex:

$c \quad$| $a b$ |
| :--- |
| $a c$ |
| $a d$ |
| $b c$ |

$\frac{b}{b d}$
$c d$

- Is there a more indirect (local) way to force lots of edges?

Extremal graph theory

Minimum degree δ : Smallest number of edges adjacent to a vertex

$\mathcal{G}_{n}(\delta)=\{$ All graphs on n vertices with minimum degree at least $\delta\}$.

Extremal graph theory

Minimum degree δ : Smallest number of edges adjacent to a vertex

$\mathcal{G}_{n}(\delta)=\{$ All graphs on n vertices with minimum degree at least $\delta\}$.
Question (Today's question)
Out of all the graphs in $\mathcal{G}_{n}(\delta)$, which has the largest value of $i_{t}(G)$ for each t ?

Extremal graph theory

Minimum degree δ : Smallest number of edges adjacent to a vertex
G :

$\mathcal{G}_{n}(\delta)=\{$ All graphs on n vertices with minimum degree at least $\delta\}$.
Question (Today's question)
Out of all the graphs in $\mathcal{G}_{n}(\delta)$, which has the largest value of $i_{t}(G)$ for each t ?

Remarks (true for all graphs on n vertices):

- For all graphs $G, i_{0}(G)=1, i_{1}(G)=n$.

Extremal graph theory

Minimum degree δ : Smallest number of edges adjacent to a vertex
G :

$\mathcal{G}_{n}(\delta)=\{$ All graphs on n vertices with minimum degree at least $\delta\}$.

Question (Today's question)

Out of all the graphs in $\mathcal{G}_{n}(\delta)$, which has the largest value of $i_{t}(G)$ for each t ?

Remarks (true for all graphs on n vertices):

- For all graphs $G, i_{0}(G)=1, i_{1}(G)=n$.
- For all graphs $G, i_{2}(G)=\binom{n}{2}-|E(G)|$.

Extremal graph theory

Minimum degree δ : Smallest number of edges adjacent to a vertex
$G:$

$\mathcal{G}_{n}(\delta)=\{$ All graphs on n vertices with minimum degree at least $\delta\}$.

Question (Today's question)

Out of all the graphs in $\mathcal{G}_{n}(\delta)$, which has the largest value of $i_{t}(G)$ for each t ?

Remarks (true for all graphs on n vertices):

- For all graphs $G, i_{0}(G)=1, i_{1}(G)=n$.
- For all graphs $G, i_{2}(G)=\binom{n}{2}-|E(G)|$.

Guess: extremal graph in $\mathcal{G}_{n}(\delta)$ should have all degrees equal to δ.
$\delta=0,1$

$$
\mathcal{G}_{n}(0) \Longrightarrow \text { empty graph maximizes } i_{t}(G) . \checkmark
$$

$\delta=0,1$
$\mathcal{G}_{n}(0) \Longrightarrow$ empty graph maximizes $i_{t}(G) . \checkmark$

Question (Today's question, $\delta=1$)
Out of all the graphs in $\mathcal{G}_{n}(1)$, which has the largest value of $i_{t}(G)$ for each t ?
$\delta=0,1$
$\mathcal{G}_{n}(0) \Longrightarrow$ empty graph maximizes $i_{t}(G) . \checkmark$

Question (Today's question, $\delta=1$)
Out of all the graphs in $\mathcal{G}_{n}(1)$, which has the largest value of $i_{t}(G)$ for each t ?

Extremal guess (graph with the least number of edges, n even):

Has largest value of $i_{t}(G)$ for $t=0,1,2$ and for all G in $\mathcal{G}_{n}(1)$.

A new contender

A new contender

A new contender

A new contender

$$
i_{3}\left(G_{1}\right)=\frac{n(n-2)(n-4)}{3!}
$$

$\delta=1$
Old thought: extremal graph has fewest number of edges.
New thought: extremal graph has largest maximal independent set (for all $t \geq 3$).
$\delta=1$
Old thought: extremal graph has fewest number of edges.
New thought: extremal graph has largest maximal independent set (for all $t \geq 3$).
Theorem (Galvin, 2011)
For each $3 \leq t \leq n-1$, any graph $G \in \mathcal{G}_{n}(1)$ has

$$
i_{t}(G) \leq i_{t}\left(K_{1, n-1}\right)=\binom{n-1}{t}
$$

$\delta=1$
Old thought: extremal graph has fewest number of edges.
New thought: extremal graph has largest maximal independent set (for all $t \geq 3$).
Theorem (Galvin, 2011)
For each $3 \leq t \leq n-1$, any graph $G \in \mathcal{G}_{n}(1)$ has

$$
i_{t}(G) \leq i_{t}\left(K_{1, n-1}\right)=\binom{n-1}{t}
$$

Why?

Proof idea, $t=3$

Let's start by looking at size $t=3$: Let G be any graph with minimal degree at least 1.

- Suppose that G has a vertex v as pictured:

Proof idea, $t=3$

Let's start by looking at size $t=3$: Let G be any graph with minimal degree at least 1.

- Suppose that G has a vertex v as pictured:

- Independent sets of size 3 including $v: \leq\binom{ n-2}{2}$

Proof idea, $t=3$

Let's start by looking at size $t=3$: Let G be any graph with minimal degree at least 1.

- Suppose that G has a vertex v as pictured:

- Independent sets of size 3 including $v: \leq\binom{ n-2}{2}$
- Induction on $n \Longrightarrow$ Independent sets of size 3 not including v : $\leq\binom{(n-1)-1}{3}$

Proof idea, $t=3$

Let's start by looking at size $t=3$: Let G be any graph with minimal degree at least 1.

- Suppose that G has a vertex v as pictured:

- Independent sets of size 3 including $v: \leq\binom{ n-2}{2}$
- Induction on $n \Longrightarrow$ Independent sets of size 3 not including v :
$\leq\binom{(n-1)-1}{3}$
- This implies $i_{t}(G) \leq\binom{ n-1}{3} \checkmark$

Proof idea, $t=3$

Let's start by looking at size $t=3$: Let G be any graph with minimal degree at least 1.

- Suppose that G has a vertex v as pictured:

- Independent sets of size 3 including $\left.v: \leq \begin{array}{c}n-2 \\ 2\end{array}\right)$
- Induction on $n \Longrightarrow$ Independent sets of size 3 not including v :
$\leq\binom{(n-1)-1}{3}$
- This implies $i_{t}(G) \leq\binom{ n-1}{3} \checkmark$
- Goal: show if we don't have this situation, then we have at most $\binom{n-1}{3}$ independent sets of size 3.

Proof idea, $t=3$

Look at graphs G where each vertex has a neighbor with degree 1.

Proof idea, $t=3$

Look at graphs G where each vertex has a neighbor with degree 1.
Let's look at an ordered independent set of size 3:

Proof idea, $t=3$

Look at graphs G where each vertex has a neighbor with degree 1.
Let's look at an ordered independent set of size 3:

How many ordered independent sets of size 3 can G have? At most:

$$
n(n-2)(n-4)<(n-1)(n-2)(n-3) .
$$

Proof idea, $t=3$

Look at graphs G where each vertex has a neighbor with degree 1. Let's look at an ordered independent set of size 3:

How many ordered independent sets of size 3 can G have? At most:

$$
n(n-2)(n-4)<(n-1)(n-2)(n-3) .
$$

So G has at most

$$
\frac{n(n-2)(n-4)}{3!}<\frac{(n-1)(n-2)(n-3)}{3!}=\binom{n-1}{3}
$$

unordered independent sets of size 3.

Proof idea, $t>3$

We can use ordered independent sets to obtain the result for any $t>3$:
How many ordered independent sets of size 4 can G in $\mathcal{G}_{n}(1)$ have?

- There are at most $(n-1)(n-2)(n-3)$ ordered independent sets of size 3 (from previous slides);

Proof idea, $t>3$

We can use ordered independent sets to obtain the result for any $t>3$:
How many ordered independent sets of size 4 can G in $\mathcal{G}_{n}(1)$ have?

- There are at most $(n-1)(n-2)(n-3)$ ordered independent sets of size 3 (from previous slides);
- There are at most $(n-4)$ vertices which can be added to form an ordered independent set of size 4;

Proof idea, $t>3$

We can use ordered independent sets to obtain the result for any $t>3$:
How many ordered independent sets of size 4 can G in $\mathcal{G}_{n}(1)$ have?

- There are at most $(n-1)(n-2)(n-3)$ ordered independent sets of size 3 (from previous slides);
- There are at most $(n-4)$ vertices which can be added to form an ordered independent set of size 4;

- There are at most $(n-1)(n-2)(n-3)(n-4)$ ordered independent sets of size 4.

Proof idea, $t>3$

We can use ordered independent sets to obtain the result for any $t>3$:
How many ordered independent sets of size 4 can G in $\mathcal{G}_{n}(1)$ have?

- There are at most $(n-1)(n-2)(n-3)$ ordered independent sets of size 3 (from previous slides);
- There are at most $(n-4)$ vertices which can be added to form an ordered independent set of size 4;

- There are at most $(n-1)(n-2)(n-3)(n-4)$ ordered independent sets of size 4.
- There are at most $(n-1)(n-2)(n-3)(n-4) / 4$! $=\binom{n-1}{4}$ independent sets of size 4.

Proof idea, $t>3$

We can use ordered independent sets to obtain the result for any $t>3$:
How many ordered independent sets of size 4 can G in $\mathcal{G}_{n}(1)$ have?

- There are at most $(n-1)(n-2)(n-3)$ ordered independent sets of size 3 (from previous slides);
- There are at most $(n-4)$ vertices which can be added to form an ordered independent set of size 4;

- There are at most $(n-1)(n-2)(n-3)(n-4)$ ordered independent sets of size 4.
- There are at most $(n-1)(n-2)(n-3)(n-4) / 4!=\binom{n-1}{4}$ independent sets of size 4.
- This argument works for any $t \geq 4$.

General Result

Larger minimum degrees? Tweaking the previous argument gives:

Theorem (E., Galvin 2014)
Fix $\delta \geq 2$, size $\delta+1 \leq t \leq n-\delta$, and n large enough. If $G \in \mathcal{G}_{n}(\delta)$, then

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t}
$$

Open questions
 What about sizes $3 \leq t \leq \delta$?

Open questions

What about sizes $3 \leq t \leq \delta$?

Conjecture

Let $G \in \mathcal{G}_{n}(\delta)$ for $\delta>2$. Then for each size $3 \leq t \leq \delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t}+\binom{\delta}{t} .
$$

Hot off the presses:

Open questions

What about sizes $3 \leq t \leq \delta$?

Conjecture

Let $G \in \mathcal{G}_{n}(\delta)$ for $\delta>2$. Then for each size $3 \leq t \leq \delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t}+\binom{\delta}{t} .
$$

Hot off the presses:

- Cutler-Radcliffe [2014] showed $\sum_{t} i_{t}(G) \leq \sum_{t} i_{t}\left(K_{\delta, n-\delta}\right)$

Open questions

What about sizes $3 \leq t \leq \delta$?

Conjecture

Let $G \in \mathcal{G}_{n}(\delta)$ for $\delta>2$. Then for each size $3 \leq t \leq \delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t}+\binom{\delta}{t} .
$$

Hot off the presses:

- Cutler-Radcliffe [2014] showed $\sum_{t} i_{t}(G) \leq \sum_{t} i_{t}\left(K_{\delta, n-\delta}\right)$
- Gan-Loh-Sudakov [2014+] Conjecture true(!) (for all $n \geq 2 \delta$)

Open questions

What if...?

Open questions

What if...?

"In mathematics, the art of proposing a question must be held of higher value than solving it." - Georg Cantor

Open questions

What if...?

"In mathematics, the art of proposing a question must be held of higher value than solving it." - Georg Cantor

Question: What if $n<2 \delta$? Example: $n=7, \delta=4$

Open questions

What if...?
"In mathematics, the art of proposing a question must be held of higher value than solving it." - Georg Cantor

Question: What if $n<2 \delta$? Example: $n=7, \delta=4$

Does this graph maximize $i_{t}(G)(t \geq 3)$ when $n<2 \delta$? [True if $\left.n-\delta \mid \delta\right]$

Open questions

Other open questions:

- Question: What if we require minimum degree at least δ and maximum degree at most Δ ?

Open questions

Other open questions:

- Question: What if we require minimum degree at least δ and maximum degree at most Δ ?
- Conjectured extremal graph (disjoint copies of $K_{\delta, \Delta}$):

Open questions

Other open questions:

- Question: What if we require minimum degree at least δ and maximum degree at most Δ ?
- Conjectured extremal graph (disjoint copies of $K_{\delta, \Delta}$):

- Question: Special case: What if all vertices have degree δ ?

Open questions

Other open questions:

- Question: What if we require minimum degree at least δ and maximum degree at most Δ ?
- Conjectured extremal graph (disjoint copies of $K_{\delta, \Delta}$):

- Question: Special case: What if all vertices have degree δ ?
- (Kahn) Conjectured extremal graph (for δ-regular graphs):

Thank you!

Slides available on my website:
www.mscs.mu.edu/~engbers/

