1. Definition and Examples

Definition 1.1 Given graphs G and H, an H-coloring of G (or graph homomorphism) is ar edge-preserving map from the vertices of G to the vertices of H

Examples

- Independent sets

- Proper q-colorings

- Widom-Rowlinson

Also:

- H is a blueprint; it encodes the coloring scheme
- Natural to allow H to have loops
- $\operatorname{hom}(G, H)=$ the number of H-colorings of G
- hom $\left(G, H_{\text {comp }}\right)=2^{(\# \text { of components of } G)}$
$-\operatorname{hom}\left(G, K_{2}\right)=\mathbf{1}_{\{G}$ bipartite $2^{2}{ }^{(\# \text { of bipartite components of } G)}$

2. Statistical Physics Interpretation

Hard Constraint Spin System

- Imagine $V(G)=$ particles, $E(G)=$ adjacency (e.g. spatial proximity)
- Place spins on those particles so that adjacent particles receive 'compatible' spins

- Spins = colors; a spin configuration is an H-coloring - This idea generalizes to putting objects (with relationships) into classes with hard rules
- $K_{q}: \sum d(v)=q(q-1) ;\left(\Delta_{H}\right)^{2}=(q-1)^{2} \boldsymbol{X} \quad$ (e.g. $\left.K_{2}: \sum d(v)=2 ;\left(\Delta_{H}\right)^{2}=1 \boldsymbol{X}\right)$
$H_{\text {HR }} \sum \sum(v)=2,\left(\Delta_{H}\right)^{2}=1 \boldsymbol{x}$
- Any* H with looped dominating vertex

Idea: Partition $\mathcal{G}(n, \delta)$ by the size of a maximum matching M :

Then:

$$
\operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq 7^{|M|{ }_{3} n-2|M|}=\left(\frac{7}{3^{2}}\right)^{|M|}{ }_{3^{n}}=\left(\frac{\sum d(v)}{\left(\Delta_{H}\right)^{2}}\right)^{|M|}{ }_{3^{n}}
$$

- This implies that any maximizing graph G has $|M| \leq c \delta$

$$
\begin{array}{lll}
|M| & \delta \\
& \\
\end{array}
$$

- Graphs with $|M| \leq \delta$ maximized by $K_{\delta, n-\delta}$
- Graphs with $\delta+1 \leq|M| \leq \delta \delta$ require analyzing the remaining edges:

-Show that G contains $K_{\delta, \Omega(n)}$:

$$
\operatorname{hom}\left(G, H_{\mathrm{WR}}\right) \leq\left(\frac{7}{9}\right) 3^{n-\delta}+\left(\frac{2}{3}\right)^{\Omega(n)} 3^{n}<3^{n-\delta}
$$

- Find a necessary and sufficient blue condition on H for $\operatorname{hom}(G, H) \leq \operatorname{hom}\left(K_{\delta, n-\delta}, H\right)$ - Solve Conjecture 4.3 for other values of $\delta \geq 3$
- Find meaningful structural properties of edge-critical graphs when $\delta \geq 3$
- Solve Question 3.1 for $\mathcal{G}=n$-vertex graphs with min degree δ, max degree at most Δ

8. References

.J. Culler and A.J. Radolife, Extremal graphs tor homomorphisms, J. Graph Theory 67 (2011), 261 -284.
J. Engbers, Extremal H-colorrings of graphs with fixed minimum degree, in preparation.

. Gavin and P Tetail On weighted fraph homomorohisms, Graphs, Moronhisms and Statistical Physids
Theoret. Comput. Sci. 63 (2004), $97-104$.
J. . Rann, An entropy aporoach to the hard-core model on bipartite graphs, Combin. Probab. Comput. 10 (2001). 219-237.
6. J. Kahn, An entroy approach to the hard-core model on bipartite graphs, Combin. Probab. Comput. 10 (2001), $219-237$.
7. P.-S. Loh, O. Pikhurko, and B. Sudakov, Maximizing the number of -colorings, Proc. London Math. Soc. 101(3) (2010), $65-69 \mathrm{~F}$
8. Y. Zhao, The number of independent sets in a regular graph, Combin. Probab. Comput. 19 (2010), $315-320$.
9. Y. Zhao, The bipartite swapping trick on onraph homomorophisms, SIAM J. Discrete Math 25 (2011), 660 -880.

