Counting independent sets in graphs with a given minimal degree

John Engbers* David Galvin

University of Notre Dame Department of Mathematics

April 2012

John Engbers (Notre Dame)

Independent sets

April 2012 1 / 14

< 3

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

< 6 b

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

i(G): Total number of independent sets in a graph G.

 $i_t(G)$: Number of independent sets with size t in G ($t \in \{0, 1, ..., n\}$).

▲ 同 ▶ → 三 ▶

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

i(G): Total number of independent sets in a graph G.

 $i_t(G)$: Number of independent sets with size t in G ($t \in \{0, 1, ..., n\}$).

Question

Given a family of graphs \mathcal{G} , what is the maximum value of i(G) and $i_t(G)$ as G ranges over \mathcal{G} ?

A D M A A A M M

 $\mathcal{G}(n)$: trees on *n* vertices

< 3

Image: A matched block of the second seco

 $\mathcal{G}(n)$: trees on *n* vertices

Theorem (Prodinger, Tichy 1982) For $G \in \mathcal{G}(n)$, • i(G) maximized by the star $K_{1,n-1}$.

▲ 同 ▶ → 三 ▶

 $\mathcal{G}(n)$: trees on *n* vertices

Theorem (Prodinger, Tichy 1982)

For $G \in \mathcal{G}(n)$,

• i(G) maximized by the star $K_{1,n-1}$.

Theorem (Wingard 1995)

For $G \in \mathcal{G}(n)$,

• $i_t(G)$ maximized by the star $K_{1,n-1}$ for all t.

 $\mathcal{G}(n)$: trees on *n* vertices

Theorem (Prodinger, Tichy 1982) For $G \in \mathcal{G}(n)$,

• i(G) maximized by the star $K_{1,n-1}$.

Theorem (Wingard 1995)

For $G \in \mathcal{G}(n)$,

• $i_t(G)$ maximized by the star $K_{1,n-1}$ for all t.

Foreshadowing: *G* a tree $\implies \delta(G) = 1$

A (10) A (10) A (10)

Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with *n* vertices, *m* edges

Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with *n* vertices, *m* edges

Theorem (Cutler, Radcliffe 2011)

For $G \in \mathcal{G}(n,m)$,

- i(G) maximized by Lex(n,m)
- $i_t(G)$ maximized by Lex(n,m) for all t.

< 🗇 🕨 < 🖃 >

Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with *n* vertices, *m* edges

Theorem (Cutler, Radcliffe 2011)

For $G \in \mathcal{G}(n,m)$,

- i(G) maximized by Lex(n,m)
- $i_t(G)$ maximized by Lex(n,m) for all t.

Fixed order, regular of fixed degree $\mathcal{G}(n, d)$: graphs with *n* vertices, *d*-regular

Fixed order, regular of fixed degree $\mathcal{G}(n, d)$: graphs with *n* vertices, *d*-regular

Theorem (Kahn 2001; Zhao 2011)

For $G \in \mathcal{G}(n,d)$, • i(G) maximized by $\frac{n}{2d}K_{d,d}$, disjoint union of $\frac{n}{2d}$ copies of $K_{d,d}$.

Fixed order, regular of fixed degree $\mathcal{G}(n, d)$: graphs with *n* vertices, *d*-regular

Theorem (Kahn 2001; Zhao 2011)

For $G \in \mathcal{G}(n, d)$,

• i(G) maximized by $\frac{n}{2d}K_{d,d}$, disjoint union of $\frac{n}{2d}$ copies of $K_{d,d}$.

Conjecture (Kahn 2001)

For $G \in \mathcal{G}(n, d)$,

• $i_t(G)$ maximized by $\frac{n}{2d}K_{d,d}$ for all t.

Asymptotic evidence for conjecture given by Carroll, G., Tetali (2009)

John Engbers (Notre Dame)

 $\mathcal{G}(n)$: connected graphs on *n* vertices with no cut-edges

< 3

 $\mathcal{G}(n)$: connected graphs on *n* vertices with no cut-edges

Theorem (Hua 2009) For $G \in \mathcal{G}(n)$, • i(G) maximized by $K_{2,n-2}$.

-

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\mathcal{G}(n)$: connected graphs on *n* vertices with no cut-edges

Theorem (Hua 2009) For $G \in \mathcal{G}(n)$, • i(G) maximized by $K_{2,n-2}$.

Theorem (E., G. 2012+) For $G \in \mathcal{G}(n)$, • $i_t(G)$ maximized by $K_{2,n-2}$ for $t \neq 2$.

 $\mathcal{G}(n)$: connected graphs on *n* vertices with no cut-edges

Theorem (Hua 2009) For $G \in \mathcal{G}(n)$, • i(G) maximized by $K_{2,n-2}$.

Theorem (E., G. 2012+) For $G \in \mathcal{G}(n)$, • $i_t(G)$ maximized by $K_{2,n-2}$ for $t \neq 2$.

Note: no cut-edges $\implies \delta(G) \ge 2$.

John Engbers (Notre Dame)

Intuition: fewer edges implies more independent sets.

- E

Intuition: fewer edges implies more independent sets.

Naive Conjecture

 $i(G), i_t(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s

< 🗇 🕨 < 🖃 🕨

Intuition: fewer edges implies more independent sets.

Naive Conjecture

 $i(G), i_t(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s

Wrong! even for $\delta = 1$

< ロ > < 同 > < 回 > < 回 >

Intuition: fewer edges implies more independent sets.

Naive Conjecture

 $i(G), i_t(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s

Wrong! even for $\delta = 1$

New intuition: Maximize $\alpha(G)$

Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.

Conjecture

For $G \in \mathcal{G}(n, \delta)$, • for $n \ge 2\delta$, i(G) uniquely maximized by $K_{\delta n-\delta}$

Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.

Conjecture

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2\delta$, i(G) uniquely maximized by $K_{\delta,n-\delta}$
- for $n < 2\delta$, i(G) uniquely maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$ where $x < n-\delta$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conjecture (G. 2011)

For $n \geq 2\delta$, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

 $i_t(G) \leq i_t(K_{\delta,n-\delta})$

Conjecture (G. 2011)

For $n \ge 2\delta$, $t \ge 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)

Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

Conjecture (G. 2011)

For $n \geq 2\delta$, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)

Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

• $\delta \geq 4$ and $t \geq 2\delta + 1$	
• $\delta = 1, 2, 3$	
Conjecture true for	
Theorem (E., G. 2012+)	

Observation

Suffices to consider $t = 2\delta + 1$.

イロト イポト イヨト イヨト

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets) $\leq (n - \delta)^{\underline{t}}$

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets)
$$\leq (n - \delta)^{\underline{t}}$$

Ordered (t + 1)-set: choose first *t*, which rules out $t + \delta$ vertices, so:

#(ordered independent (t+1)-sets) $\leq (n-\delta)^{\underline{t}}(n-(\delta+t)) = (n-\delta)^{\underline{t+1}}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets)
$$\leq (n - \delta)^{\underline{t}}$$

Ordered (t + 1)-set: choose first *t*, which rules out $t + \delta$ vertices, so:

#(ordered independent (t + 1)-sets) $\leq (n - \delta)^{\underline{t}}(n - (\delta + t)) = (n - \delta)^{\underline{t+1}}$

therefore

$$i_{t+1}(G) \leq \binom{n-\delta}{t+1} = i_{t+1}(K_{\delta,n-\delta}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: prove $t = 2\delta + 1$ by induction on *n*.

Base case: $n = 3\delta + 1$ is trivial.

Goal: prove $t = 2\delta + 1$ by induction on *n*.

Base case: $n = 3\delta + 1$ is trivial.

Inductive step, case 1: There is $v \in V(G)$ with $\delta(G - v) = \delta$. Then:

Goal: prove $t = 2\delta + 1$ by induction on *n*.

Base case: $n = 3\delta + 1$ is trivial.

Inductive step, case 1: There is $v \in V(G)$ with $\delta(G - v) = \delta$. Then:

$$i_t(G) = i_t(G-v) + i_{t-1}(G-v-N(v))$$

Goal: prove $t = 2\delta + 1$ by induction on *n*.

Base case: $n = 3\delta + 1$ is trivial.

Inductive step, case 1: There is $v \in V(G)$ with $\delta(G - v) = \delta$. Then:

$$i_{t}(G) = i_{t}(G - v) + i_{t-1}(G - v - N(v))$$

$$\leq \binom{(n-1) - \delta}{t} \text{[induction]} + \binom{n - (\delta + 1)}{t - 1} \text{[trivial bound]}$$

Goal: prove $t = 2\delta + 1$ by induction on *n*.

Base case: $n = 3\delta + 1$ is trivial.

Inductive step, case 1: There is $v \in V(G)$ with $\delta(G - v) = \delta$. Then:

$$i_{t}(G) = i_{t}(G - v) + i_{t-1}(G - v - N(v))$$

$$\leq \binom{(n-1) - \delta}{t} \text{[induction]} + \binom{n - (\delta + 1)}{t - 1} \text{[trivial bound]}$$

$$= \binom{n - \delta}{t}.$$

John Engbers (Notre Dame)

▲ 同 ▶ → 三 ▶

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where *k* is the number of vertices with degree $> \delta$.

A (10) A (10) A (10)

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$. Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where *k* is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree = δ :

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t))$$

Missing term?

• Worst case situation: each new choice shares same δ neighbors

イロト イポト イラト イラト

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$. Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where *k* is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree = δ :

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t))$$

Missing term?

Worst case situation: each new choice shares same δ neighbors

• Can't happen $\delta + 1$ times (or we're in case 1.)

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$. Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where *k* is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree = δ :

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t))$$

Missing term?

• Worst case situation: each new choice shares same δ neighbors

- Can't happen $\delta + 1$ times (or we're in case 1.)
- $(\delta + 1)$ st choice (at worst) removes a new vertex

Have

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

and

$$#_{=\delta} \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t)).$$

イロト イヨト イヨト イヨト

Have

$$\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

and

$$#_{=\delta} \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t)).$$

Worst case is k = 0:

$$i_t(G) \leq \frac{1}{t!} n(n - (\delta + 1))(n - (\delta + 2)) \cdots (n - (\delta + t))$$

$$\leq \frac{1}{t!} (n - \delta)(n - (\delta + 1)) \cdots (n - (\delta + (t - 1))) [\text{uses } t = 2\delta + 1]$$

$$= \binom{n - \delta}{t}.$$

John Engbers (Notre Dame)

イロト イヨト イヨト イヨト

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

4 A N

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]
- The result for $\delta = 1, 2, 3$:
 - $\delta = 1$ is covered by $t \ge 2\delta + 1$
 - $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
 - $\delta \ge 4$ seems hard with these methods.

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]
- The result for $\delta = 1, 2, 3$:
 - $\delta = 1$ is covered by $t \ge 2\delta + 1$
 - $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
 - $\delta \ge 4$ seems hard with these methods.

Question

Fix $n < 2\delta$ and $t \ge 3$. Is $i_t(G)$ maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$, where $G \in \mathcal{G}(n,\delta)$ and $x < n - \delta$?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]
- The result for $\delta = 1, 2, 3$:
 - $\delta = 1$ is covered by $t \ge 2\delta + 1$
 - $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
 - $\delta \ge 4$ seems hard with these methods.

Question

Fix $n < 2\delta$ and $t \ge 3$. Is $i_t(G)$ maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$, where $G \in \mathcal{G}(n,\delta)$ and $x < n - \delta$?

Thank you!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >