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An extremal question

Independent set (of vertices): A set of vertices which are pairwise
non-adjacent.

v1

v2

v3

v4

v5G :

i(G): Total number of independent sets in a graph G.

it(G): Number of independent sets with size t in G (t ∈ {0, 1, ..., n}).

Question
Given a family of graphs G, what is the maximum value of i(G) and
it(G) as G ranges over G?
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Fixed order, trees
G(n): trees on n vertices

Theorem (Prodinger, Tichy 1982)
For G ∈ G(n),

i(G) maximized by the star K1,n−1.

Theorem (Wingard 1995)
For G ∈ G(n),

it(G) maximized by the star K1,n−1 for all t.

Foreshadowing: G a tree =⇒ δ(G) = 1
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Fixed order, fixed number of edges
G(n,m): graphs with n vertices, m edges

Theorem (Cutler, Radcliffe 2011)
For G ∈ G(n,m),

i(G) maximized by Lex(n,m)

it(G) maximized by Lex(n,m) for all t.

1 2

3

4
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8

Lex(8, 11)
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Fixed order, regular of fixed degree
G(n, d): graphs with n vertices, d-regular

Theorem (Kahn 2001; Zhao 2011)
For G ∈ G(n, d),

i(G) maximized by n
2d Kd,d, disjoint union of n

2d copies of Kd,d.

Conjecture (Kahn 2001)
For G ∈ G(n, d),

it(G) maximized by n
2d Kd,d for all t.

Asymptotic evidence for conjecture given by Carroll, G., Tetali
(2009)
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Fixed order, connected, no cut-edges
G(n): connected graphs on n vertices with no cut-edges

K2,n−2

· · ·

Theorem (Hua 2009)
For G ∈ G(n),

i(G) maximized by K2,n−2.

Theorem (E., G. 2012+)
For G ∈ G(n),

it(G) maximized by K2,n−2 for t 6= 2.

Note: no cut-edges =⇒ δ(G) ≥ 2.
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Today’s family: fixed order, fixed minimum degree
G(n, δ): n-vertex graphs with minimum degree δ

Intuition: fewer edges implies more independent sets.

Naive Conjecture
i(G), it(G) maximized in G(n, δ) by disjoint union of Kδ,δ ’s

Wrong! even for δ = 1

· · ·

i(nK2) = 3n/2

· · ·

i(K1,n−1) = 2n−1 + 1

New intuition: Maximize α(G)
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Fixed order, fixed minimum degree
Theorem (G. 2011)
For n ≥ 4δ2 and G ∈ G(n, δ),

i(G) uniquely maximized by Kδ,n−δ.

· · ·

K2,n−2

Conjecture
For G ∈ G(n, δ),

for n ≥ 2δ, i(G) uniquely maximized by Kδ,n−δ
for n < 2δ, i(G) uniquely maximized by Kn−δ,n−δ,...,n−δ,x where
x < n− δ.
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G(n, δ): fixed size independent sets
i2(G) =

(n
2

)
− |E(G)| =⇒ a regular G (not Kδ,n−δ!) is maximizer

Conjecture (G. 2011)
For n ≥ 2δ, t ≥ 3, and G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ)

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G ∈ G(n, δ).

Theorem (E., G. 2012+)
Conjecture true for

δ = 1, 2, 3

δ ≥ 4 and t ≥ 2δ + 1

John Engbers (Notre Dame) Independent sets April 2012 9 / 14



G(n, δ): fixed size independent sets
i2(G) =

(n
2

)
− |E(G)| =⇒ a regular G (not Kδ,n−δ!) is maximizer

Conjecture (G. 2011)
For n ≥ 2δ, t ≥ 3, and G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ)

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G ∈ G(n, δ).

Theorem (E., G. 2012+)
Conjecture true for

δ = 1, 2, 3

δ ≥ 4 and t ≥ 2δ + 1

John Engbers (Notre Dame) Independent sets April 2012 9 / 14



G(n, δ): fixed size independent sets
i2(G) =

(n
2

)
− |E(G)| =⇒ a regular G (not Kδ,n−δ!) is maximizer

Conjecture (G. 2011)
For n ≥ 2δ, t ≥ 3, and G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ)

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G ∈ G(n, δ).

Theorem (E., G. 2012+)
Conjecture true for

δ = 1, 2, 3

δ ≥ 4 and t ≥ 2δ + 1

John Engbers (Notre Dame) Independent sets April 2012 9 / 14



G(n, δ): fixed size independent sets
i2(G) =

(n
2

)
− |E(G)| =⇒ a regular G (not Kδ,n−δ!) is maximizer

Conjecture (G. 2011)
For n ≥ 2δ, t ≥ 3, and G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ)

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G ∈ G(n, δ).

Theorem (E., G. 2012+)
Conjecture true for

δ = 1, 2, 3

δ ≥ 4 and t ≥ 2δ + 1

John Engbers (Notre Dame) Independent sets April 2012 9 / 14



Proof for t ≥ 2δ + 1
Observation
Suffices to consider t = 2δ + 1.

Proof: Suppose that for some t > δ,

it(G) ≤ it(Kδ,n−δ) =
(

n− δ
t

)
.

Then
#(ordered independent t-sets) ≤ (n− δ)t

Ordered (t + 1)-set: choose first t, which rules out t + δ vertices, so:

#(ordered independent (t + 1)-sets) ≤ (n− δ)t(n− (δ + t)) = (n− δ)t+1

therefore

it+1(G) ≤
(

n− δ
t + 1

)
= it+1(Kδ,n−δ).
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Proof for t ≥ 2δ + 1

Goal: prove t = 2δ + 1 by induction on n.

Base case: n = 3δ + 1 is trivial.

Inductive step, case 1: There is v ∈ V(G) with δ(G− v) = δ. Then:

it(G) = it(G− v) + it−1(G− v− N(v))

≤
(
(n− 1)− δ

t

)
[induction] +

(
n− (δ + 1)

t − 1

)
[trivial bound]

=

(
n− δ

t

)
.

John Engbers (Notre Dame) Independent sets April 2012 11 / 14



Proof for t ≥ 2δ + 1

Goal: prove t = 2δ + 1 by induction on n.

Base case: n = 3δ + 1 is trivial.

Inductive step, case 1: There is v ∈ V(G) with δ(G− v) = δ. Then:

it(G) = it(G− v) + it−1(G− v− N(v))

≤
(
(n− 1)− δ

t

)
[induction] +

(
n− (δ + 1)

t − 1

)
[trivial bound]

=

(
n− δ

t

)
.

John Engbers (Notre Dame) Independent sets April 2012 11 / 14



Proof for t ≥ 2δ + 1

Goal: prove t = 2δ + 1 by induction on n.

Base case: n = 3δ + 1 is trivial.

Inductive step, case 1: There is v ∈ V(G) with δ(G− v) = δ. Then:

it(G) = it(G− v) + it−1(G− v− N(v))

≤
(
(n− 1)− δ

t

)
[induction] +

(
n− (δ + 1)

t − 1

)
[trivial bound]

=

(
n− δ

t

)
.

John Engbers (Notre Dame) Independent sets April 2012 11 / 14



Proof for t ≥ 2δ + 1

Goal: prove t = 2δ + 1 by induction on n.

Base case: n = 3δ + 1 is trivial.

Inductive step, case 1: There is v ∈ V(G) with δ(G− v) = δ. Then:

it(G) = it(G− v) + it−1(G− v− N(v))

≤
(
(n− 1)− δ

t

)
[induction] +

(
n− (δ + 1)

t − 1

)
[trivial bound]

=

(
n− δ

t

)
.

John Engbers (Notre Dame) Independent sets April 2012 11 / 14



Proof for t ≥ 2δ + 1

Goal: prove t = 2δ + 1 by induction on n.

Base case: n = 3δ + 1 is trivial.

Inductive step, case 1: There is v ∈ V(G) with δ(G− v) = δ. Then:

it(G) = it(G− v) + it−1(G− v− N(v))

≤
(
(n− 1)− δ

t

)
[induction] +

(
n− (δ + 1)

t − 1

)
[trivial bound]

=

(
n− δ

t

)
.

John Engbers (Notre Dame) Independent sets April 2012 11 / 14



Proof for t ≥ 2δ + 1
Inductive step, case 2: There is no v ∈ V(G) with δ(G− v) = δ.

Ordered independent t-sets starting with vertex of degree > δ:

#>δ ≤ k(n− (δ + 2))(n− (δ + 3)) · · · (n− (δ + t))

where k is the number of vertices with degree > δ.

Ordered independent t-sets starting with vertex of degree = δ:

#=δ ≤ (n− k)(n− (δ + 1))(n− (δ + 2)) · · ·
̂(n− (2δ + 1))(n− (2δ + 2)) · · · (n− (δ + t))

Missing term?
Worst case situation: each new choice shares same δ neighbors
Can’t happen δ + 1 times (or we’re in case 1.)
(δ + 1)st choice (at worst) removes a new vertex
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Proof for t ≥ 2δ + 1
Have

#>δ ≤ k(n− (δ + 2))(n− (δ + 3)) · · · (n− (δ + t))

and

#=δ ≤ (n− k)(n− (δ + 1))(n− (δ + 2)) · · ·
̂(n− (2δ + 1))(n− (2δ + 2)) · · · (n− (δ + t)).

Worst case is k = 0:

it(G) ≤ 1
t!

n(n− (δ + 1))(n− (δ + 2)) · · ·

̂(n− (2δ + 1))(n− (2δ + 2)) · · · (n− (δ + t))

≤ 1
t!
(n− δ)(n− (δ + 1)) · · ·

(n− (2δ + 1)) · · · (n− (δ + (t − 1)))[uses t = 2δ + 1]

=

(
n− δ

t

)
.
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Final remarks
Future improvements?

Consider second/third/etc. choices more carefully
Condition on the degrees of neighbors [linear programming]

The result for δ = 1, 2, 3:
δ = 1 is covered by t ≥ 2δ + 1

δ = 2, 3 involves messy case analysis, structural characterization
of δ-critical graphs.
δ ≥ 4 seems hard with these methods.

Question
Fix n < 2δ and t ≥ 3. Is it(G) maximized by Kn−δ,n−δ,...,n−δ,x, where
G ∈ G(n, δ) and x < n− δ?

Thank you!
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Question
Fix n < 2δ and t ≥ 3. Is it(G) maximized by Kn−δ,n−δ,...,n−δ,x, where
G ∈ G(n, δ) and x < n− δ?
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