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An extremal question

Independent set (of vertices): A set of vertices which are pairwise
non-adjacent.
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An extremal question

Independent set (of vertices): A set of vertices which are pairwise
non-adjacent.
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Vi V4

i(G): Total number of independent sets in a graph G.

i;(G): Number of independent sets with size7in G (t € {0, 1,...,n}).
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An extremal question

Independent set (of vertices): A set of vertices which are pairwise

non-adjacent.

V3

Vi V4

i(G): Total number of independent sets in a graph G.

i;(G): Number of independent sets with size7in G (r € {0, 1, ...

Question

Given a family of graphs G, what is the maximum value of i(G) and

i;(G) as G ranges over G?
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Fixed order, trees
G(n): trees on n vertices

S 060
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Fixed order, trees
G(n): trees on n vertices

Theorem (Prodinger, Tichy 1982)
For G € G(n),

@ i(G) maximized by the star K, ,, ;.
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Fixed order, trees
G(n): trees on n vertices

S50-bc

Theorem (Prodinger, Tichy 1982)
For G € G(n),
@ i(G) maximized by the star K, .

Theorem (Wingard 1995)
For G € G(n),
@ ,(G) maximized by the star K, ,,, for all .
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Fixed order, trees
G(n): trees on n vertices

Soobo

Theorem (Prodinger, Tichy 1982)
For G € G(n),
@ i(G) maximized by the star K, .

Theorem (Wingard 1995)
For G € G(n),
@ ,(G) maximized by the star K, ,,, for all .

Foreshadowing: G atree — §(G) =1

John Engbers (Notre Dame) Independent sets April 2012 3/14



Fixed order, fixed number of edges
G(n,m): graphs with n vertices, m edges
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Fixed order, fixed number of edges
G(n,m): graphs with n vertices, m edges

Theorem (Cutler, Radcliffe 2011)
For G € G(n,m),

@ i(G) maximized by Lex(n,m)

@ ,(G) maximized by Lex(n,m) for all t.
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Fixed order, fixed number of edges
G(n,m): graphs with n vertices, m edges

Theorem (Cutler, Radcliffe 2011)
For G € G(n,m),

@ i(G) maximized by Lex(n,m)

@ ,(G) maximized by Lex(n,m) for all t.

6 5
7 4
8 3
1 2
Lex(8,11)
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Fixed order, regular of fixed degree
G(n,d): graphs with n vertices, d-regular
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Fixed order, regular of fixed degree
G(n,d): graphs with n vertices, d-regular

Theorem (Kahn 2001; Zhao 2011)
For G € G(n,d),

@ i(G) maximized by 5K, 4, disjoint union of 5; copies of K; 4.
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Fixed order, regular of fixed degree
G(n,d): graphs with n vertices, d-regular

Theorem (Kahn 2001; Zhao 2011)
ForG € G(n,d),
@ i(G) maximized by 5K, 4, disjoint union of 5; copies of K; 4.

Conjecture (Kahn 2001)
ForG € G(n,d),
@ i,(G) maximized by 5K, . for allt.

@ Asymptotic evidence for conjecture given by Carroll, G., Tetali
(2009)
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Fixed order, connected, no cut-edges
G(n): connected graphs on n vertices with no cut-edges

K>
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Fixed order, connected, no cut-edges
G(n): connected graphs on n vertices with no cut-edges

K>
Theorem (Hua 2009)
For G € G(n),
@ i(G) maximized by K> ,, .
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Fixed order, connected, no cut-edges
G(n): connected graphs on n vertices with no cut-edges

K>

Theorem (Hua 2009)
For G € G(n),
@ i(G) maximized by K> ,, .

Theorem (E., G. 2012+)
For G € G(n),
@ ,(G) maximized by K» ,_» fort # 2.
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Fixed order, connected, no cut-edges
G(n): connected graphs on n vertices with no cut-edges

K>

Theorem (Hua 2009)
For G € G(n),
@ i(G) maximized by K> ,, .

Theorem (E., G. 2012+)
For G € G(n),
@ ,(G) maximized by K» ,_» fort # 2.

Note: no cut-edges — 4(G) > 2.
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Today’s family: fixed order, fixed minimum degree
G(n,d): n-vertex graphs with minimum degree §

Intuition: fewer edges implies more independent sets.
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Today’s family: fixed order, fixed minimum degree
G(n,d): n-vertex graphs with minimum degree §

Intuition: fewer edges implies more independent sets.
Naive Conjecture
i(G), iy(G) maximized in G(n, §) by disjoint union of K5 ;5's J
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Today’s family: fixed order, fixed minimum degree
G(n,d): n-vertex graphs with minimum degree §

Intuition: fewer edges implies more independent sets.

Naive Conjecture
i(G), iy(G) maximized in G(n, §) by disjoint union of K5 ;5's J

Wrong! even for 6 = 1

56 &8

l’le = 3n/2

i(KLn—l) =214
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Today’s family: fixed order, fixed minimum degree
G(n,d): n-vertex graphs with minimum degree §

Intuition: fewer edges implies more independent sets.

Naive Conjecture
i(G), iy(G) maximized in G(n, §) by disjoint union of K5 ;5's J

Wrong! even for 6 = 1

56 &8

l’le = 3n/2
i(KLn—l) =214

New intuition: Maximize o(G)
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Fixed order, fixed minimum degree
Theorem (G. 2011)
Forn > 46> and G € G(n,6),

@ i(G) uniquely maximized by K, 5.

K>p s
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Fixed order, fixed minimum degree
Theorem (G. 2011)
Forn > 46> and G € G(n,6),

@ i(G) uniquely maximized by K, 5.

K>pnoo

Conjecture
ForG € G(n,9),
@ forn > 24, i(G) uniquely maximized by Ks s
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Fixed order, fixed minimum degree
Theorem (G. 2011)
Forn > 46> and G € G(n,6),

@ i(G) uniquely maximized by K, 5.

K>pnoo

Conjecture
For G € G(n,9),
@ forn > 24, i(G) uniquely maximized by Ks s

@ forn < 20, i(G) uniquely maximized by K,,_; ,—s
x<n-—9.

1—s.x Where

.....
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G(n,
i(G)

9): fixed size independent sets

(5) = |[E(G)| = aregular G (not Ks,—s!) is maximizer
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G(n,0): fixed size independent sets
ir(G) = (5) — |[E(G)| = aregular G (not K;,_s!) is maximizer

Conjecture (G. 2011)
Forn>12§,t>3,and G € G(n,J),

ir(G) < iy(Ksp—s)
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G(n,0): fixed size independent sets
ir(G) = (5) — |[E(G)| = aregular G (not K;,_s!) is maximizer

Conjecture (G. 2011)
Forn>12§,t>3,and G € G(n,J),

ir(G) < iy(Ksp—s)

Progress:
Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G € G(n, ). J
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G(n,d): fixed size independent sets
ir(G) = (5) — |[E(G)| = aregular G (not K;,_s!) is maximizer

Conjecture (G. 2011)
Forn>12§,t>3,and G € G(n,J),

ir(G) < iy(Ksp—s)

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite G € G(n, ).

Theorem (E., G. 2012+)
Conjecture true for
@5=1,23
@ >4andr>26+1
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Proof forr > 26 + 1
Observation

Suffices to considert = 26 + 1.
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Proof forr > 26 + 1

Observation
Suffices to considert = 26 + 1.

Proof: Suppose that for some 1 > 4,

t

6) < ko) = ("),
Then

#(ordered independent r-sets) < (n — 4)*
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Proof fort > 26 + 1

Observation
Suffices to considert = 26 + 1.

Proof: Suppose that for some 1 > 4,

t

i1(G) < in(Ksp—s) = (n B 5)-
Then 7

#(ordered independent r-sets) < (n — 4!

Ordered (1 + 1)-set: choose first 7, which rules out 7 + ¢ vertices, so:

#(ordered independent (1 + 1)-sets) < (n — 8)i(n — (§ + 1)) = (n — §)*L
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Proof fort > 26 + 1

Observation
Suffices to considert = 26 + 1.

Proof: Suppose that for some 1 > 4,

t

-6
it(G) < it(Ké,n—d) = (n )
Then
#(ordered independent r-sets) < (n — d)*
Ordered (1 + 1)-set: choose first 7, which rules out 7 + ¢ vertices, so:
#(ordered independent (7 + 1)-sets) < (n — 0)X(n — (§ +1)) = (n — §)=*L

therefore 5
n—
iit1(G) < (H— 1) = ir11(Ksn—s)-
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Proof forr > 26 + 1

Goal: prove 1 = 26 + 1 by induction on n.

Base case: n = 3§ + 1 is trivial.
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Proof forr > 26 + 1

Goal: prove 1 = 26 + 1 by induction on n.

Base case: n = 3§ + 1 is trivial.

Inductive step, case 1: There is v € V(G) with §(G — v) = 6. Then:
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Proof fort > 26 + 1

Goal: prove 1 = 26 + 1 by induction on n.
Base case: n = 39 + | is trivial.

Inductive step, case 1: There is v € V(G) with §(G — v) = 6. Then:

0WG) = iW(G—v)+i—1(G—v—N({))
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Proof fort > 26 + 1

Goal: prove 1 = 26 + 1 by induction on n.
Base case: n = 39 + | is trivial.

Inductive step, case 1: There is v € V(G) with §(G — v) = 6. Then:

0WG) = iW(G—v)+i—1(G—v—N({))

<(” ) 1) ) 5) [induction] + (n —t(f—ll- 1))[triViaI bound]

IN
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Proof fort > 26 + 1

Goal: prove 1 = 26 + 1 by induction on n.
Base case: n = 39 + | is trivial.

Inductive step, case 1: There is v € V(G) with §(G — v) = 6. Then:

0WG) = iW(G—v)+i—1(G—v—N({))

<(” ) 1) ) 5) [induction] + (n —t(f—ll- 1))[triViaI bound]

_ (";5).

IN
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Proof fort > 26 + 1

Inductive step, case 2: There isno v € V(G) with §(G —v) = 0.
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Proof fort > 26 + 1

Inductive step, case 2: There isno v € V(G) with §(G —v) = 0.

Ordered independent r-sets starting with vertex of degree > ¢:

o5 < k(n=(6042))(n—(6+3))---(n—(0+1))

where k is the number of vertices with degree > §.
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Proof fort > 20 + 1

Inductive step, case 2: Thereisnov € V(G) with 6(G —v) = 6.

Ordered independent r-sets starting with vertex of degree > ¢:
#Hos < k(n—(+2)n—(+3)) - (n—(d+1))

where k is the number of vertices with degree > §.

Ordered independent t-sets starting with vertex of degree = 4:

H#5 < (m—k)n—@+1)n—(6+2)
(n=(2042))--(n= (6 +1))

Missing term?
@ Worst case situation: each new choice shares same § neighbors
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Proof for ¢t > 26 + 1

Inductive step, case 2: Thereisnov € V(G) with 6(G —v) = 6.

Ordered independent r-sets starting with vertex of degree > ¢:

#Hos < k(n—(+2)n—(+3)) - (n—(d+1))
where k is the number of vertices with degree > §.
Ordered independent t-sets starting with vertex of degree = 4:
#es < (n=k)n—(0+1)(n—(5+2)) -

(n—(2042)--(n—(0+1))

Missing term?

@ Worst case situation: each new choice shares same § neighbors
@ Can'’t happen ¢ + 1 times (or we're in case 1.)
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Proof fort > 2§ + 1
Inductive step, case 2: Thereisnov € V(G) with 6(G —v) = 6.

Ordered independent r-sets starting with vertex of degree > ¢:
#Hos < k(n—(+2)n—(+3)) - (n—(d+1))
where k is the number of vertices with degree > §.
Ordered independent t-sets starting with vertex of degree = 4:
#.s < m—kn—0O+1)n—-00+2))---
(n—(2042)--(n—(0+1))
Missing term?
@ Worst case situation: each new choice shares same § neighbors

@ Can'’t happen ¢ + 1 times (or we're in case 1.)
@ (0 + 1)st choice (at worst) removes a new vertex
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Proof forr > 26 + 1
Have
#os < k(n—(04+2)(n—(0+3))(n—(0+1)
and
#H s < (m—k)n—G+1))(n—(6+2)---
(n—=(2642))---(n— (6 +1)).

= = = = = wae
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Proof fort > 20 + 1
Have
#os < k(n—(04+2))(n—(6+3)) - (n—(0+1))
and
#H s < (m—k)n—G+1))(n—(6+2)---
(n—=(2642))---(n— (6 +1)).

Worst case is k = 0:

i(G) < %n(n—(5+1))(n—(5+2))...
(n=(26+2))---(n— (6 +1))
%(n—5)(n—(5+1))...
(n—(26+1))---(n— (5 + (t—1)))[uses r = 26 + 1]

_ <”;‘5).
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Final remarks
Future improvements?
@ Consider second/third/etc. choices more carefully
@ Condition on the degrees of neighbors [linear programming]
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Final remarks
Future improvements?
@ Consider second/third/etc. choices more carefully
@ Condition on the degrees of neighbors [linear programming]

The result for 6 = 1,2, 3:
@ 0= liscoveredbyr>2§+1

@ 0 = 2,3 involves messy case analysis, structural characterization
of §-critical graphs.

@ ) > 4 seems hard with these methods.
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Final remarks
Future improvements?
@ Consider second/third/etc. choices more carefully
@ Condition on the degrees of neighbors [linear programming]

The result for 6 = 1,2, 3:
@ 0= liscoveredbyr>2§+1

@ 0 = 2,3 involves messy case analysis, structural characterization
of §-critical graphs.

@ ) > 4 seems hard with these methods.

Question

Fixn <26 andr > 3. Is i;,(G) maximized by K,,_s ,—s....n—s.x, Where
Geg(n,d)andx<n—06?
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Final remarks
Future improvements?

@ Consider second/third/etc. choices more carefully
@ Condition on the degrees of neighbors [linear programming]

The result for 6 = 1,2, 3:
@ 0= liscoveredbyr>2§+1

@ 0 = 2,3 involves messy case analysis, structural characterization
of §-critical graphs.

@ ) > 4 seems hard with these methods.

Question

Fixn <26 andr > 3. Is i;,(G) maximized by K,,_s ,—s....n—s.x, Where
Geg(n,d)andx<n—06?

Thank you!
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