The typical structure of H-colorings of the Hamming cube

John Engbers* and David Galvin

Department of Mathematics
University of Notre Dame
7 November, 2010

Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph G to a simple (possibly with loops) graph H is a map $f: V(G) \rightarrow V(H)$ which preserves adjacency.

Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph G to a simple (possibly with loops) graph H is a map $f: V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

- H-colorings generalize: proper q-colorings

Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph G to a simple (possibly with loops) graph H is a $\operatorname{map} f: V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

$$
H:
$$

- H-colorings generalize: proper q-colorings, independent sets

Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph G to a simple (possibly with loops) graph H is a $\operatorname{map} f: V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

$$
H:
$$

- H-colorings generalize: proper q-colorings, independent sets, the Widom-Rowlinson model.

Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph G to a simple (possibly with loops) graph H is a $\operatorname{map} f: V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

$$
H:
$$

- H-colorings generalize: proper q-colorings, independent sets, the Widom-Rowlinson model.
- We'll discuss proper q-colorings in this talk.

Question

Let G be a graph, $q \in \mathbb{Z}_{+}$, and suppose we select a proper q-coloring of G at random. Natural question: What does it look like?

Question

Let G be a graph, $q \in \mathbb{Z}_{+}$, and suppose we select a proper q-coloring of G at random. Natural question: What does it look like?

Slight problem: G might not have a proper q-coloring.

New Question

Let's restrict our graphs G to be regular, bipartite.
Some examples:

- \mathbb{Z}^{n} - strings of n integers, 2 strings adjacent if they differ in exactly one coordinate by ± 1

New Question

Let's restrict our graphs G to be regular, bipartite.
Some examples:

- \mathbb{Z}^{n} - strings of n integers, 2 strings adjacent if they differ in exactly one coordinate by ± 1
- $(\mathbb{Z} / M)^{n}$ (for M even) - even discrete torus

New Question

Let's restrict our graphs G to be regular, bipartite.
Some examples:

- \mathbb{Z}^{n} - strings of n integers, 2 strings adjacent if they differ in exactly one coordinate by ± 1
- $(\mathbb{Z} / M)^{n}$ (for M even) - even discrete torus
- $\{0,1\}^{n}$ - Hamming cube or discrete hypercube

New Question

Let's restrict our graphs G to be regular, bipartite.
Some examples:

- \mathbb{Z}^{n} - strings of n integers, 2 strings adjacent if they differ in exactly one coordinate by ± 1
- $(\mathbb{Z} / M)^{n}$ (for M even) - even discrete torus
- $\{0,1\}^{n}$ - Hamming cube or discrete hypercube
- bipartition classes E and O

New Question

Question: given an N-vertex d-regular bipartite graph, select a proper q-coloring of G at random. What does it look like?

New Question

Question: given an N-vertex d-regular bipartite graph, select a proper q-coloring of G at random. What does it look like?

- Symmetry: E (\# of vertices colored with fixed color) $=N / q$

Results

Theorem (E., Galvin 2010)
Given an N-vertex, d-regular bipartite graph G and a uniformly chosen q-coloring of G, a.a.s. (as $d \rightarrow \infty$) each color appears on about

- N / q vertices for q even,
- between $[N /(q+1), N /(q-1)]$ vertices for q odd.

Results

Theorem (E., Galvin 2010)

Given an N-vertex, d-regular bipartite graph G and a uniformly chosen q-coloring of G, a.a.s. (as $d \rightarrow \infty$) each color appears on about

- N / q vertices for q even,
- between $[N /(q+1), N /(q-1)]$ vertices for q odd.

Where are these numbers coming from?

4-coloring:

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)
- Each color appears on vertices from both partition classes

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)
- Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)
- Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph
- For q odd there are $(q+1) / 2$ colors with $N /(q+1)$ vertices of that color, and $(q-1) / 2$ colors with $N /(q-1)$

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)
- Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph
- For q odd there are $(q+1) / 2$ colors with $N /(q+1)$ vertices of that color, and $(q-1) / 2$ colors with $N /(q-1)$
- Each color appears almost exclusively on a single partition class

Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- G as $N / 2 d$ disjoint copies of $K_{d, d}$, the complete bipartite graph with $2 d$ vertices
- About N / q vertices colored with each color (q odd or even)
- Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph
- For q odd there are $(q+1) / 2$ colors with $N /(q+1)$ vertices of that color, and $(q-1) / 2$ colors with $N /(q-1)$
- Each color appears almost exclusively on a single partition class

What drives these? Number of components, expansion

Hamming Cube

What about the Hamming cube $\{0,1\}^{d}$?

Hamming Cube

What about the Hamming cube $\{0,1\}^{d}$?

Theorem (E., Galvin 2010)

For a uniformly chosen q-colorings on $\{0,1\}^{d}$ (with $N=2^{d}$), we have
(1) for q even, each color appears on about N / q vertices,
(2) for q odd, $(q+1) / 2$ colors appear on about $N /(q+1)$ vertices and the remaining $(q-1) / 2$ colors appear on about $N /(q-1)$ vertices.
Additionally, each color appears almost exclusively on one partition class of $\{0,1\}^{d}$.

Corollaries

Corollary

The space of 5-colorings of $\{0,1\}^{d}$ breaks up into 20 large classes based on the dominant colors on one partition of $\{0,1\}^{d}$, plus a small extra class.

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

- Fix a randomly chosen v in $\{0,1\}^{d}$, choose a uniform 5-coloring.

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

- Fix a randomly chosen v in $\{0,1\}^{d}$, choose a uniform 5-coloring.
- Probability vector for v is $(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)$.

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

- Fix a randomly chosen v in $\{0,1\}^{d}$, choose a uniform 5-coloring.
- Probability vector for v is $(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)$.
- Suppose an arbitrarily chosen $w \neq v$ is colored red:

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

- Fix a randomly chosen v in $\{0,1\}^{d}$, choose a uniform 5-coloring.
- Probability vector for v is $(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)$.
- Suppose an arbitrarily chosen $w \neq v$ is colored red:
- If w is in the same partition class
as v, conditional probability vector for v is
(2/5,3/20, 3/20, 3/20, 3/20),

Corollaries

Corollary

$\{0,1\}^{d}$ exhibits a long-range influence (asymptotically in d).
For example, when $q=5$, we get the following:

- Fix a randomly chosen v in $\{0,1\}^{d}$, choose a uniform 5 -coloring.
- Probability vector for v is $(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)$.
- Suppose an arbitrarily chosen $w \neq v$ is colored red:
- If w is in the same partition class as v, conditional probability vector for v is (2/5,3/20, 3/20, 3/20, 3/20),
- If w is in the other partition class from v, conditional probability vector for v is

$$
(0,1 / 4,1 / 4,1 / 4,1 / 4)
$$

Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0,1\}^{d}$ to a doubly infinite path.

Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0,1\}^{d}$ to a doubly infinite path.

Relies on notion of an ideal edge:

- $N(x) \backslash\{y\}$ are colored using set of colors A
- $N(y) \backslash\{x\}$ are colored using set of colors B

Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0,1\}^{d}$ to a doubly infinite path.

Relies on notion of an ideal edge:

- $N(x) \backslash\{y\}$ are colored using set of colors A
- $N(y) \backslash\{x\}$ are colored using set of colors B
Edge is ideal if A and B are disjoint, use all available colors, and as equal in size as possible.

Idea of Proof

Local structure of $\{0,1\}^{d}$:

Rough idea is to maximize count for an A, B :

Idea of Proof

Local structure of $\{0,1\}^{d}$:

Rough idea is to maximize count for an A, B :

- $A \cup B=\{1, \ldots, q\}, A \cap B=\varnothing$

Idea of Proof

Local structure of $\{0,1\}^{d}$:

Rough idea is to maximize count for an A, B :

- $A \cup B=\{1, \ldots, q\}, A \cap B=\varnothing$
- A, B both have size $\sim q / 2$

Idea of Proof

Local structure of $\{0,1\}^{d}$:

Rough idea is to maximize count for an A, B :

- $A \cup B=\{1, \ldots, q\}, A \cap B=\varnothing$
- A, B both have size $\sim q / 2$
- Count is maximized for an ideal edge

Idea of Proof

Local structure of $\{0,1\}^{d}$:

Rough idea is to maximize count for an A, B :

- $A \cup B=\{1, \ldots, q\}, A \cap B=\varnothing$
- A, B both have size $\sim q / 2$
- Count is maximized for an ideal edge
- Can't have too many 'non-ideal' (A, B)

Idea of Proof

How do we formalize this? Entropy: For a discrete, finite-valued random variable X,

$$
H(X)=\sum_{x \in \operatorname{Range}(X)}-\operatorname{Pr}(X=x) \log \operatorname{Pr}(X=x)
$$

Idea of Proof

How do we formalize this? Entropy:
For a discrete, finite-valued random variable X,

$$
H(X)=\sum_{x \in \operatorname{Range}(X)}-\operatorname{Pr}(X=x) \log \operatorname{Pr}(X=x) .
$$

- Useful in counting: $H(X) \leq \log |\operatorname{Range}(X)|$ $H(X)=\log |\operatorname{Range}(X)| \Longleftrightarrow X$ is uniform

Idea of Proof

How do we formalize this? Entropy:
For a discrete, finite-valued random variable X,

$$
H(X)=\sum_{x \in \operatorname{Range}(X)}-\operatorname{Pr}(X=x) \log \operatorname{Pr}(X=x) .
$$

- Useful in counting: $H(X) \leq \log |\operatorname{Range}(X)|$

$$
H(X)=\log |\operatorname{Range}(X)| \Longleftrightarrow X \text { is uniform }
$$

- Shearer's Lemma: Piece together local results to give global result, roughly,

$$
H(\text { global }) \leq \frac{1}{c} \sum H(\text { local }) .
$$

Idea of Proof

How do we formalize this? Entropy:
For a discrete, finite-valued random variable X,

$$
H(X)=\sum_{x \in \operatorname{Range}(X)}-\operatorname{Pr}(X=x) \log \operatorname{Pr}(X=x) .
$$

- Useful in counting: $H(X) \leq \log |\operatorname{Range}(X)|$

$$
H(X)=\log |\operatorname{Range}(X)| \Longleftrightarrow X \text { is uniform }
$$

- Shearer's Lemma: Piece together local results to give global result, roughly,

$$
H(\text { global }) \leq \frac{1}{c} \sum H(\text { local })
$$

- $X=$ uniformly chosen q-coloring of $\{0,1\}^{d}$.

$$
\begin{gathered}
\log \left|(q / 2)^{2^{d}}\right| \leq \log \mid \# \text { of } q-\text { colorings } \mid=H(X) \\
H(X) \leq \frac{1}{c} \sum H(\text { local })
\end{gathered}
$$

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H-colorings

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H -colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H -colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:
(1) $q=2: 2$

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H -colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:
(1) $q=2: 2$
(2) $q=3$ (Galvin 2003): $\sim 6 e 2^{2^{d-1}}$

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H -colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:
(1) $q=2: 2$
(2) $q=3$ (Galvin 2003): $\sim 6 e 2^{2^{d-1}}$
(3) $q \geq 4$?

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H-colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:
(1) $q=2: 2$
(2) $q=3$ (Galvin 2003): $\sim 6 e 2^{2^{d-1}}$
(3) $q \geq 4$?
- Run bond percolation on $\{0,1\}^{d}$. Is there a threshold for obtaining similar structural results?

Generalizations and Questions

Proof can be generalized:

- $\{0,1\}^{d}$ can be replaced by even torus $(\mathbb{Z} / M)^{d}$
- Goes through for H-colorings

Questions:

- How many q-colorings of $\{0,1\}^{d}$ are there? Related results:
(1) $q=2: 2$
(2) $q=3$ (Galvin 2003): $\sim 6 e 2^{2^{d-1}}$
(3) $q \geq 4$?
- Run bond percolation on $\{0,1\}^{d}$. Is there a threshold for obtaining similar structural results?
- Results for \mathbb{Z}^{d} ?

Want: $M \rightarrow \infty, d$ fixed.
Now: M fixed, $d \rightarrow \infty$.
Can do: $M=c \log d$

End

Thank You!

