The typical structure of *H*-colorings of the Hamming cube

John Engbers* and David Galvin

Department of Mathematics University of Notre Dame

7 November, 2010

E N 4 E N

4 6 1 1 4

A graph homomorphism, or *H*-coloring, from a simple, loopless graph *G* to a simple (possibly with loops) graph *H* is a map $f : V(G) \rightarrow V(H)$ which preserves adjacency.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A graph homomorphism, or *H*-coloring, from a simple, loopless graph *G* to a simple (possibly with loops) graph *H* is a map $f : V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

• *H*-colorings generalize: proper *q*-colorings

4 A N

A graph homomorphism, or *H*-coloring, from a simple, loopless graph *G* to a simple (possibly with loops) graph *H* is a map $f : V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

• *H*-colorings generalize: proper *q*-colorings, independent sets

A graph homomorphism, or *H*-coloring, from a simple, loopless graph *G* to a simple (possibly with loops) graph *H* is a map $f : V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

• *H*-colorings generalize: proper *q*-colorings, independent sets, the Widom-Rowlinson model.

The Sec. 74

A graph homomorphism, or *H*-coloring, from a simple, loopless graph *G* to a simple (possibly with loops) graph *H* is a map $f : V(G) \rightarrow V(H)$ which preserves adjacency.

Examples:

- *H*-colorings generalize: proper *q*-colorings, independent sets, the Widom-Rowlinson model.
- We'll discuss proper *q*-colorings in this talk.

John Engbers (Notre Dame)

H-coloring the Hamming cube

Question

Let *G* be a graph, $q \in \mathbb{Z}_+$, and suppose we select a proper *q*-coloring of *G* at random. Natural question: What does it look like?

Question

Let *G* be a graph, $q \in \mathbb{Z}_+$, and suppose we select a proper *q*-coloring of *G* at random. Natural question: What does it look like?

Slight problem: *G* might not have a proper *q*-coloring.

Let's restrict our graphs *G* to be regular, bipartite.

Some examples:

● Zⁿ - strings of *n* integers, 2 strings adjacent if they differ in exactly one coordinate by ±1

< ロ > < 同 > < 回 > < 回 >

Let's restrict our graphs *G* to be regular, bipartite.

Some examples:

- Zⁿ strings of *n* integers, 2 strings adjacent if they differ in exactly one coordinate by ±1
- $(\mathbb{Z}/M)^n$ (for *M* even) even discrete torus

イロト イポト イラト イラト

Let's restrict our graphs *G* to be regular, bipartite.

Some examples:

- ℤⁿ strings of *n* integers, 2 strings adjacent if they differ in exactly
 one coordinate by ±1
- $(\mathbb{Z}/M)^n$ (for *M* even) even discrete torus
- $\{0,1\}^n$ Hamming cube or discrete hypercube

4 **A** N A **B** N A **B** N

Let's restrict our graphs *G* to be regular, bipartite.

Some examples:

- ℤⁿ strings of *n* integers, 2 strings adjacent if they differ in exactly
 one coordinate by ±1
- $(\mathbb{Z}/M)^n$ (for *M* even) even discrete torus
- $\{0,1\}^n$ Hamming cube or discrete hypercube

- bipartition classes E and O

Question: given an *N*-vertex *d*-regular bipartite graph, select a proper *q*-coloring of *G* at random. What does it look like?

Question: given an *N*-vertex *d*-regular bipartite graph, select a proper q-coloring of *G* at random. What does it look like?

• Symmetry: E(# of vertices colored with fixed color) = N/q

A .

Results

Theorem (E., Galvin 2010)

Given an *N*-vertex, *d*-regular bipartite graph *G* and a uniformly chosen *q*-coloring of *G*, a.a.s. (as $d \to \infty$) each color appears on about

- N/q vertices for q even,
- between [N/(q+1), N/(q-1)] vertices for q odd.

Results

Theorem (E., Galvin 2010)

Given an *N*-vertex, *d*-regular bipartite graph *G* and a uniformly chosen *q*-coloring of *G*, a.a.s. (as $d \to \infty$) each color appears on about

- N/q vertices for q even,
- between [N/(q+1), N/(q-1)] vertices for q odd.

Where are these numbers coming from?

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

• *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices

< ロ > < 同 > < 回 > < 回 >

Can this be strengthened (G an N-vertex, d-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)

イロト イポト イラト イラト

Can this be strengthened (*G* an *N*-vertex, *d*-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)
 - Each color appears on vertices from both partition classes

Can this be strengthened (*G* an *N*-vertex, *d*-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)
 - Each color appears on vertices from both partition classes
- *G* as a random *d*-regular bipartite graph

Can this be strengthened (*G* an *N*-vertex, *d*-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)
 - Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph

- For q odd there are (q+1)/2 colors with N/(q+1) vertices of that color, and (q-1)/2 colors with N/(q-1)

Can this be strengthened (*G* an *N*-vertex, *d*-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)
 - Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph
 - For q odd there are (q+1)/2 colors with N/(q+1) vertices of that color, and (q-1)/2 colors with N/(q-1)
 - Each color appears almost exclusively on a single partition class

Can this be strengthened (*G* an *N*-vertex, *d*-regular bipartite graph)? No:

- *G* as N/2d disjoint copies of $K_{d,d}$, the complete bipartite graph with 2d vertices
 - About N/q vertices colored with each color (q odd or even)
 - Each color appears on vertices from both partition classes
- G as a random d-regular bipartite graph
 - For q odd there are (q+1)/2 colors with N/(q+1) vertices of that color, and (q-1)/2 colors with N/(q-1)

- Each color appears almost exclusively on a single partition class What drives these? Number of components, expansion

Hamming Cube

What about the Hamming cube $\{0,1\}^d$?

э

イロト イポト イヨト イヨト

Hamming Cube

What about the Hamming cube $\{0,1\}^d$?

Theorem (E., Galvin 2010)

For a uniformly chosen *q*-colorings on $\{0,1\}^d$ (with $N = 2^d$), we have

- for q even, each color appears on about N/q vertices,
- 2 for q odd, (q + 1)/2 colors appear on about N/(q + 1) vertices and the remaining (q 1)/2 colors appear on about N/(q 1) vertices.

Additionally, each color appears almost exclusively on one partition class of $\{0,1\}^d$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Corollary

The space of 5-colorings of $\{0,1\}^d$ breaks up into 20 large classes based on the dominant colors on one partition of $\{0,1\}^d$, plus a small extra class.

A .

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

э

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

• Fix a randomly chosen v in $\{0,1\}^d$, choose a uniform 5-coloring.

4 3 5 4 3 5 5

< 6 b

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

- Fix a randomly chosen v in $\{0,1\}^d$, choose a uniform 5-coloring.
- Probability vector for v is (1/5, 1/5, 1/5, 1/5, 1/5).

3

4 E N 4 E N

< 🗇 🕨

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

- Fix a randomly chosen v in $\{0,1\}^d$, choose a uniform 5-coloring.
- Probability vector for v is (1/5, 1/5, 1/5, 1/5, 1/5).
- Suppose an arbitrarily chosen $w \neq v$ is colored red:

4 3 5 4 3 5 5

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

- Fix a randomly chosen v in $\{0,1\}^d$, choose a uniform 5-coloring.
- Probability vector for v is (1/5, 1/5, 1/5, 1/5, 1/5).
- Suppose an arbitrarily chosen $w \neq v$ is colored red:
- If w is in the same partition class as v, conditional probability vector for v is (2/5,3/20,3/20,3/20,3/20),

3

4 3 5 4 3 5 5

Corollary

 $\{0,1\}^d$ exhibits a long-range influence (asymptotically in *d*).

For example, when q = 5, we get the following:

- Fix a randomly chosen v in $\{0,1\}^d$, choose a uniform 5-coloring.
- Probability vector for v is (1/5, 1/5, 1/5, 1/5, 1/5).
- Suppose an arbitrarily chosen $w \neq v$ is colored red:
- If w is in the same partition class as v, conditional probability vector for v is (2/5,3/20,3/20,3/20,3/20),
- If w is in the other partition class from v, conditional probability vector for v is

(0, 1/4, 1/4, 1/4, 1/4).

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0,1\}^d$ to a doubly infinite path.

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0, 1\}^d$ to a doubly infinite path.

Relies on notion of an ideal edge:

- N(x) \ {y} are colored using set of colors A
- N(y) \ {x} are colored using set of colors B

Generalizes a proof of Kahn (2001) on homomorphisms from $\{0, 1\}^d$ to a doubly infinite path.

Relies on notion of an ideal edge:

- N(x) \ {y} are colored using set of colors A
- N(y) \ {x} are colored using set of colors B

Edge is *ideal* if *A* and *B* are disjoint, use all available colors, and as equal in size as possible.

$$\overbrace{(|A^c||B^c|-|A^c\cap B^c|)}^{x,y}\overbrace{(|A||B|-|A\cap B|)}^{N(x)\setminus\{y\},N(y)\setminus\{x\}}$$

$$\overbrace{(|A^c||B^c|-|A^c\cap B^c|)}^{x,y}\overbrace{(|A||B|-|A\cap B|)}^{N(x)\setminus\{y\},N(y)\setminus\{x\}}$$

•
$$A \cup B = \{1, \ldots, q\}, A \cap B = \emptyset$$

$$\overbrace{(|A^c||B^c| - |A^c \cap B^c|)}^{x,y} \overbrace{(|A||B| - |A \cap B|)}^{N(x) \setminus \{y\}, N(y) \setminus \{x\}}$$

•
$$A \cup B = \{1, \ldots, q\}, A \cap B = \emptyset$$

•
$$A, B$$
 both have size $\sim q/2$

Rough idea is to maximize count for an *A*, *B*:

$$\overbrace{(|A^c||B^c|-|A^c\cap B^c|)}^{x,y}\overbrace{(|A||B|-|A\cap B|)}^{N(x)\setminus\{y\},N(y)\setminus\{x\}}$$

•
$$A \cup B = \{1, \ldots, q\}, A \cap B = \emptyset$$

•
$$A, B$$
 both have size $\sim q/2$

 Count is maximized for an ideal edge

$$\overbrace{(|A^c||B^c| - |A^c \cap B^c|)}^{x,y} \overbrace{(|A||B| - |A \cap B|)}^{N(x) \setminus \{y\}, N(y) \setminus \{x\}}$$

•
$$A \cup B = \{1, \ldots, q\}, A \cap B = \emptyset$$

•
$$A, B$$
 both have size $\sim q/2$

- Count is maximized for an ideal edge
- Can't have too many 'non-ideal' (*A*, *B*)

How do we formalize this? Entropy: For a discrete, finite-valued random variable *X*,

$$H(X) = \sum_{x \in \mathsf{Range}(X)} - \Pr(X = x) \log \Pr(X = x).$$

3

How do we formalize this? Entropy: For a discrete, finite-valued random variable *X*,

$$H(X) = \sum_{x \in \mathsf{Range}(X)} - \Pr(X = x) \log \Pr(X = x).$$

• Useful in counting: $H(X) \le \log |\text{Range}(X)|$ $H(X) = \log |\text{Range}(X)| \iff X \text{ is uniform}$

4 **A** N A **B** N A **B** N

How do we formalize this? Entropy:

For a discrete, finite-valued random variable *X*,

$$H(X) = \sum_{x \in \mathsf{Range}(X)} - \Pr(X = x) \log \Pr(X = x).$$

- Useful in counting: $H(X) \le \log |\text{Range}(X)|$ $H(X) = \log |\text{Range}(X)| \iff X \text{ is uniform}$
- Shearer's Lemma: Piece together local results to give global result, roughly,

$$H(\text{global}) \leq \frac{1}{c} \sum H(\text{local}).$$

How do we formalize this? Entropy:

For a discrete, finite-valued random variable X,

$$H(X) = \sum_{x \in \mathsf{Range}(X)} - \Pr(X = x) \log \Pr(X = x).$$

- Useful in counting: $H(X) \le \log |\text{Range}(X)|$ $H(X) = \log |\text{Range}(X)| \iff X \text{ is uniform}$
- Shearer's Lemma: Piece together local results to give global result, roughly,

$$H(\text{global}) \leq \frac{1}{c} \sum H(\text{local}).$$

• X = uniformly chosen *q*-coloring of $\{0, 1\}^d$.

$$\begin{split} \log|(q/2)^{2^d}| &\leq \log|\text{\# of } q - \text{colorings}| = H(X) \\ H(X) &\leq \frac{1}{c}\sum H(\text{local}) \end{split}$$

Proof can be generalized:

• $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$

э

4 3 5 4 3 5 5

< 6 b

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

3

The Sec. 74

< 6 k

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many *q*-colorings of $\{0,1\}^d$ are there? Related results:

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many *q*-colorings of $\{0,1\}^d$ are there? Related results:

q = 2: 2

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many *q*-colorings of $\{0,1\}^d$ are there? Related results:

1
$$q = 2$$
: 2
2 $q = 3$ (Galvin 2003): $\sim 6e2^{2^{d-1}}$

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many q-colorings of $\{0,1\}^d$ are there? Related results:

1
$$q = 2$$
: 2
2 $q = 3$ (Galvin 2003): $\sim 6e2^{2^{d-1}}$
3 $q \ge 4$?

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many *q*-colorings of $\{0,1\}^d$ are there? Related results:

1
$$q = 2$$
: 2
2 $q = 3$ (Galvin 2003): $\sim 6e2^{2^{d-1}}$
3 $q \ge 4$?

• Run bond percolation on $\{0,1\}^d$. Is there a threshold for obtaining similar structural results?

Proof can be generalized:

- $\{0,1\}^d$ can be replaced by even torus $(\mathbb{Z}/M)^d$
- Goes through for *H*-colorings

Questions:

• How many *q*-colorings of $\{0,1\}^d$ are there? Related results:

1
$$q = 2$$
: 2
2 $q = 3$ (Galvin 2003): $\sim 6e2^{2^{d-1}}$
3 $q \ge 4$?

- Run bond percolation on $\{0,1\}^d$. Is there a threshold for obtaining similar structural results?
- Results for \mathbb{Z}^d ? Want: $M \to \infty$, d fixed. Now: M fixed, $d \to \infty$. Can do: $M = c \log d$

Thank You!

2

イロト イヨト イヨト イヨト