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Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph
G to a simple (possibly with loops) graph Hisamap f : V(G) — V(H)
which preserves adjacency.
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A graph homomorphism, or H-coloring, from a simple, loopless graph
G to a simple (possibly with loops) graph Hisamap f : V(G) — V(H)
which preserves adjacency.

Examples:
G: o
[ 4'» L] [ Q
@ H-colorings generalize: proper g-colorings, independent sets
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A graph homomorphism, or H-coloring, from a simple, loopless graph
G to a simple (possibly with loops) graph Hisamap f : V(G) — V(H)
which preserves adjacency.
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@ H-colorings generalize: proper g-colorings, independent sets, the

Widom-Rowlinson model.
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Definition

A graph homomorphism, or H-coloring, from a simple, loopless graph
G to a simple (possibly with loops) graph Hisamap f : V(G) — V(H)
which preserves adjacency.

Examples:

%%j Q00

@ H-colorings generalize: proper g-colorings, independent sets, the
Widom-Rowlinson model.
@ We'll discuss proper g-colorings in this talk.
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Question

Let G be a graph, ¢ € Z.., and suppose we select a proper g-coloring
of G at random. Natural question: What does it look like?

G: °
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Question

Let G be a graph, ¢ € Z.., and suppose we select a proper g-coloring

of G at random. Natural question: What does it look like?

G: °

Slight problem: G might not have a proper g¢-coloring.
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New Question

Let’s restrict our graphs G to be regular, bipartite.

Some examples:

@ 7" - strings of n integers, 2 strings adjacent if they differ in exactly
one coordinate by +1
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New Question

Let’s restrict our graphs G to be regular, bipartite.

Some examples:

@ 7" - strings of n integers, 2 strings adjacent if they differ in exactly
one coordinate by +1

@ (Z/M)" (for M even) - even discrete torus
@ {0, 1}" - Hamming cube or discrete hypercube
- bipartition classes E and O
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New Question

Question: given an N-vertex d-regular bipartite graph, select a proper
g-coloring of G at random. What does it look like?

G
110 111

010 -

Jep
000 001
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New Question

Question: given an N-vertex d-regular bipartite graph, select a proper
g-coloring of G at random. What does it look like?

G
110 111

v v

Jep
000 001

@ Symmetry: E(# of vertices colored with fixed color) = N /g
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Results
Theorem (E., Galvin 2010)

Given an N-vertex, d-regular bipartite graph G and a uniformly chosen

g-coloring of G, a.a.s. (as d — ~o) each color appears on about
@ N/q vertices for q even,

@ between [N/(q + 1),N/(q — 1)] vertices for q odd.
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Results
Theorem (E., Galvin 2010)

Given an N-vertex, d-regular bipartite graph G and a uniformly chosen
g-coloring of G, a.a.s. (as d — ~o) each color appears on about
@ N/q vertices for q even,

@ between [N/(q + 1),N/(q — 1)] vertices for q odd.

Where are these numbers coming from?

4-coloring: 5-coloring:
o— o o
o o
. . . o
[ ol 5.
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Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)?
No:

@ G as N/2d disjoint copies of K, 4, the complete bipartite graph with
2d vertices
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Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)?
No:
@ G as N/2d disjoint copies of K, 4, the complete bipartite graph with
2d vertices

- About N/q vertices colored with each color (¢ odd or even)
- Each color appears on vertices from both partition classes
@ G as arandom d-regular bipartite graph

- For ¢ odd there are (¢ + 1)/2 colors with N/(g + 1) vertices of
that color, and (¢ — 1)/2 colors with N/(¢g — 1)
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@ G as N/2d disjoint copies of K, 4, the complete bipartite graph with
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Extreme Cases

Can this be strengthened (G an N-vertex, d-regular bipartite graph)?
No:

@ G as N/2d disjoint copies of K, 4, the complete bipartite graph with
2d vertices

- About N/q vertices colored with each color (¢ odd or even)
- Each color appears on vertices from both partition classes
@ G as arandom d-regular bipartite graph

- For ¢ odd there are (¢ + 1)/2 colors with N/(g + 1) vertices of
that color, and (¢ — 1)/2 colors with N/(¢g — 1)

- Each color appears almost exclusively on a single partition class
What drives these? Number of components, expansion
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Hamming Cube

What about the Hamming cube {0, 1}¢?

John Engbers (Notre Dame)
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Hamming Cube

What about the Hamming cube {0, 1}9?
Theorem (E., Galvin 2010)

For a uniformly chosen g-colorings on {0, 1} (with N = 2¢), we have
@ for q even, each color appears on about N /q vertices,

@ forq odd, (g + 1)/2 colors appear on about N/(q + 1) vertices and
the remaining (¢ — 1)/2 colors appear on about N/(q — 1) vertices.

Additionally, each color appears almost exclusively on one partition
class of {0, 1}4.
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Corollaries
Corollary

The space of 5-colorings of {0, 1}¢ breaks up into 20 large classes
based on the dominant colors on one partition of {0, 1}¢, plus a small
extra class.

{1,2}on E
3,4,5lon 0O
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Corollaries
Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
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Corollaries
Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
@ Fix a randomly chosen v in {0, 1}¢, choose a uniform 5-coloring.
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Corollaries
Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
@ Fix a randomly chosen v in {0, 1}¢, choose a uniform 5-coloring.
@ Probability vector for vis (1/5,1/5, ,1/5,1/5).
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Corollaries
Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
@ Fix a randomly chosen v in {0, 1}¢, choose a uniform 5-coloring.
@ Probability vector for vis (1/5,1/5, ,1/5,1/5).
@ Suppose an arbitrarily chosen w # v is colored red:

John Engbers (Notre Dame) H-coloring the Hamming cube November 2010 10/15



Corollaries

Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
@ Fix a randomly chosen v in {0, 1}¢, choose a uniform 5-coloring.
@ Probability vector for vis (1/5,1/5, ,1/5,1/5).
@ Suppose an arbitrarily chosen w # v is colored red:

» If wis in the same partition class
as v, conditional probability vector

forvis
(2/5,3/20, °1,3/20,3/20),
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Corollaries

Corollary
{0, 1}¢ exhibits a long-range influence (asymptotically in d). J

For example, when g = 5, we get the following:
@ Fix a randomly chosen v in {0, 1}¢, choose a uniform 5-coloring.
@ Probability vector for vis (1/5,1/5, ,1/5,1/5).
@ Suppose an arbitrarily chosen w # v is colored red:

{1,2}on E
3,4,5on0O

» If wis in the same partition class
as v, conditional probability vector
for v is
(2/5,3/20, ,3/20,3/20),

» If wis in the other partition class
from v, conditional probability
vector for v is
0,1/4,1 1,1/4,1/4).
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Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from {0, 1}¢ to
a doubly infinite path.
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Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from {0, 1}¢ to
a doubly infinite path.

° Relies on notion of an ideal edge:

\ @ N(x)\ {y} are colored using set of
o colors A

@ N(y) \ {x} are colored using set of
colors B
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Idea of Proof

Generalizes a proof of Kahn (2001) on homomorphisms from {0, 1}¢ to

a doubly infinite path.

John Engbers (Notre Dame)

A

Relies on notion of an ideal edge:

@ N(x)\ {y} are colored using set of
colors A
@ N(y) \ {x} are colored using set of
colors B
Edge is ideal if A and B are disjoint, use all
available colors, and as equal in size as
possible.
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Idea of Proof

Local structure of {0, 1}4:

A Rough idea is to maximize count for an
A, B:

Xe

© Xy NMYEN )\ {x}

(1A%[1B°] = a“ N B) (|Al|B| — AN B])

ye

NN
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Idea of Proof

Local structure of {0, 1}4:

A Rough idea is to maximize count for an
A, B:

Xe

© Xy NMYEN )\ {x}

(1A%[1B°] = a“ N B) (|Al|B| — AN B])

@ AUB={l,....q},ANB=0
@ A, B both have size ~ ¢/2
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Idea of Proof

Local structure of {0, 1}4:

A Rough idea is to maximize count for an
A, B:

Xe

© xy N\DYNO\ ()
(lA%[[B] = AN B[) (|Al|B| — |4 N B)

@ AUB={l,....q},ANB=0
@ A, B both have size ~ ¢/2

@ Count is maximized for an ideal
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Idea of Proof

Local structure of {0, 1}4:

A Rough idea is to maximize count for an
A, B:

Xe

© xy N\DYNO\ ()
(lA%[[B] = AN B[) (|Al|B| — |4 N B)

@ AUB={l,...,q},ANB=0
@ A, B both have size ~ ¢/2
@ Count is maximized for an ideal

NN

ye ° edge
@ Can’t have too many ‘non-ideal’
o B (A7B)
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Idea of Proof
How do we formalize this? Entropy:
For a discrete, finite-valued random variable X,

H(X)= Y  —Pr(X=x)logPr(X =x).

xeRange(X)
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@ Useful in counting: H(X) < log|Range(X)|
H(X) = log|Range(X)| <= X is uniform
@ Shearer’s Lemma: Piece together local results to give global
result, roughly,

H(global) < ZH (local).
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Idea of Proof
How do we formalize this? Entropy:
For a discrete, finite-valued random variable X,

H(X)= Y  —Pr(X=x)logPr(X =x).

xeRange(X)

@ Useful in counting: H(X) < log|Range(X)|
H(X) = log|Range(X)| <= X is uniform
@ Shearer’s Lemma: Piece together local results to give global
result, roughly,

H(global) < ZH (local).
@ X = uniformly chosen g-coloring of {0, 1}.

log |(¢/2)%'| < log |# of g — colorings| = H(X)

X) < %ZH(IocaI)
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Generalizations and Questions

Proof can be generalized:
@ {0, 1} can be replaced by even torus (Z/M)?
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Proof can be generalized:
@ {0, 1} can be replaced by even torus (Z/M)?
@ Goes through for H-colorings

Questions:
@ How many g-colorings of {0, 1} are there? Related results:
Qqg9=22

@ ¢ = 3 (Galvin 2003): ~ 622"
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Generalizations and Questions

Proof can be generalized:
@ {0, 1} can be replaced by even torus (Z/M)?
@ Goes through for H-colorings

Questions:
@ How many g-colorings of {0, 1} are there? Related results:

Qq=2:2
Qg Galvm 2003): ~ 622"
Qq

I\/ ||
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Generalizations and Questions

Proof can be generalized:
@ {0, 1} can be replaced by even torus (Z/M)?
@ Goes through for H-colorings
Questions:
@ How many g-colorings of {0, 1} are there? Related results:
QD qg9=22
@ ¢ = 3 (Galvin 2003): ~ 622"
Qqg>47

@ Run bond percolation on {0, 1}¢. Is there a threshold for obtaining
similar structural results?
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Generalizations and Questions

Proof can be generalized:
@ {0, 1} can be replaced by even torus (Z/M)?
@ Goes through for H-colorings
Questions:
@ How many g-colorings of {0, 1} are there? Related results:
QD qg9=22
@ ¢ = 3 (Galvin 2003): ~ 622"
Qqg>47
@ Run bond percolation on {0, 1}¢. Is there a threshold for obtaining
similar structural results?
@ Results for Z4?
Want: M — oo, d fixed.
Now: M fixed, d — ~c.
Cando: M = clogd
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End

John Engbers (Notre Dame)
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