The Distribution of Magnitude and Complex Voxel Values in MRI

Daniel B. Rowe, Ph.D.

Associate Professor
Department of Biophysics
Division of Biostatistics
Graduate School of Biomedical Sciences

March 24, 2008

Wisconsin

Rowe, MCW

Now at
Marquette University
Department of Math, Stats, and CS

Waismann Laboratory
for Brain Imaging
and Behavior
OUTLINE

1. Image Reconstruction
2. Statistics-Ricean & Normal
3. Estimation-Ricean & Normal
4. Estimation-Bivariate Normal
5. Discussion
Reconstruction:
Ideally measure complex-valued FT of the object.

\[
S(k_x, k_y) = S_R(k_x, k_y) + i S_I(k_x, k_y)
\]

Complex: 96×96
Real: 96×96
Imaginary: 96×96

Actual data!

\[
p = 9216
\]
\# of voxels
Reconstruction:
By complex-valued inverse FT of the object.

\[(\Omega_{yR} + i\Omega_{yI}) \ast (S_R + iS_I) \ast (\Omega_{xR} + i\Omega_{xI})^T = (Y_R + iY_I)\]
Reconstruction:
Due to imperfect reconstruction (noise, T_2^*, ΔB, ...), image is complex-valued, $Y_C(x, y) = Y_R(x, y) + iY_I(x, y)$.
Reconstruction:
Toy Example 8×8, image is complex-valued,
\[Y_C(x, y) = Y_R(x, y) + iY_I(x, y). \]
Reconstruction:
By complex-valued forward FT of the object.

\[\Omega \bar{\Omega} = I \]

\[
\begin{align*}
(\Omega_{yR} + i\Omega_{yI}) & \ast (Y_R + iY_I) \ast (\Omega_{xR} + i\Omega_{xI})^T = (S_R + iS_I) \\
\end{align*}
\]
Reconstruction:

$S_R + i S_I$

On Cartesian grid

stack rows of S_R on rows of S_I

Reconstruction:

\[
S = \begin{pmatrix}
S_R \\
S_I
\end{pmatrix}
\]

\[
2p \times 1
\]

\[
\Omega = \begin{bmatrix}
\Omega_R & -\Omega_I \\
\Omega_I & \Omega_R
\end{bmatrix}
\]

\[
\Omega_R = [(\Omega_{yR} \otimes \Omega_{xR}) - (\Omega_{yI} \otimes \Omega_{xI})]
\]

\[
\Omega_I = [(\Omega_{yR} \otimes \Omega_{xI}) + (\Omega_{yI} \otimes \Omega_{xR})]
\]

Reconstruction:
Inverse FT reconstruction can be equivalently described as:

\[y = \Omega * S \]

\[y_R = \Omega * S_R \]

\[y_I = \Omega * S_I \]

Real-valued isomorphism
Reconstruction:

\[y = \begin{pmatrix} y_R \\ y_I \end{pmatrix} \]

take sections of \(y_R \)

\begin{align*}
Y_R & \quad +i \\
Y_I & \quad +i
\end{align*}

transpose

WISC, Waisman

Rowe, MCW
Reconstruction:
Inverse FT reconstruction can be performed as:

\[y = \Omega * S \]

Real-valued isomorphism
Statistics: Expectation and Covariance.

If $E(s) = s_0$, then for $y = \Omega s$, $E(y) = E(\Omega s) = \Omega s_0$.

If $\text{cov}(s) = \Gamma$, then for $y = \Omega s$, $\text{cov}(y) = \text{cov}(\Omega s) = \Omega \Gamma \Omega'$.

This means that with $\Gamma = \sigma_k^2 I$,

and because $\Omega \Omega' = \sigma^2 I$ where $\sigma^2 = (\sigma_k^2 / p^2)$

$\text{cov}(y) = \sigma^2 I_{2 \times 2}$.
Statistics: Expectation and Covariance.

When we use normal distribution from thermal noise

\[s = s_0 + \epsilon, \quad \epsilon \sim N(0, \sigma_k^2 I) \]

\[s \sim N(s_0, \sigma_0^2 I), \text{ then } y \sim N(\Omega s_0, \sigma^2 I). \]

This means that if we choose a voxel, say \(j \)
Statistics: Expectation and Covariance.

from \(y \sim N(\Omega s_0, \sigma^2 I) \), the distribution of \(y_{Rj} \) and \(y_{Ij} \) is

\[
\begin{pmatrix}
 y_{Rj} \\
 y_{Ij}
\end{pmatrix}
\sim N\left(\begin{pmatrix}
 \mu_{Rj} \\
 \mu_{Ij}
\end{pmatrix}, \begin{pmatrix}
 \sigma^2 & 0 \\
 0 & \sigma^2
\end{pmatrix}\right)
\]

where

\[
\begin{align*}
 \mu_{Rj} &= \omega_{j} s_0 \\
 \mu_{Ij} &= \omega_{p+j} s_0
\end{align*}
\]

\(y_{Cj} = y_{Rj} + iy_{Ij} \)

the pdf is

\[
p(y_{Rj}, y_{Ij}) = \frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[(y_{Rj} - \mu_{Rj})^2 + (y_{Ij} - \mu_{Ij})^2 \right] \right\}
\]

product of two normal pdfs

with phase coupled means

\[
\begin{align*}
 \mu_{Rj} &= \rho_j \cos \theta_j \\
 \mu_{Ij} &= \rho_j \sin \theta_j
\end{align*}
\]
Statistics:

Real Image

Imaginary Image

voxel j

y_{Rj}

y_{Ij}
Statistics:

Magnitude Image

Phase Image

voxel j

$$m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2}$$

$$\varphi_j = \tan^{-1}(y_{Ij} / y_{Rj})$$
Statistics:

Magnitude Image

Phase Image

voxel \(j \)

\[m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2} \]

\[\varphi_j = \tan^{-1}\left(\frac{y_{Ij}}{y_{Rj}}\right) \]

Phase generally discarded!
Statistics:

$\mathbf{R-I}$

$\mathbf{M-P}$

$\mathbf{M-P}$

\mathbf{M}

y_R

m

φ

m

φ

$m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2}$
Statistics:

Get \(p(m_j) \) from \(p(y_{Rj}, y_{Ij}) \).

\begin{align*}
\mu_{Rj} &= \rho_j \sin \theta_j \\
\mu_{Ij} &= \rho_j \cos \theta_j
\end{align*}

Convert from \(y_{Rj}, y_{Ij} \) to \(m_j, \varphi_j \).

\begin{align*}
p(y_{Rj}, y_{Ij}) &= \frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[(y_{Rj} - \rho_j \cos \theta_j)^2 + (y_{Ij} - \rho_j \sin \theta_j)^2 \right] \right\} \\
p(m_j, \varphi_j) &= \frac{m_j}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[m_j^2 + \rho_j^2 - 2m_j\rho_j \cos(\varphi_j - \theta_j) \right] \right\} \\
p(m_j) &= \frac{m_j}{\sigma^2} \exp \left\{ -\frac{m_j^2 + \rho_j^2}{2\sigma^2} \right\} I_0 \left(\frac{\rho_j m_j}{\sigma^2} \right)
\end{align*}

zeroth order modified Bessel function of first kind

\[\frac{1}{2\pi} \int_{\varphi_j = -\pi}^{\pi} e^{\frac{\rho_j m_j}{\sigma^2} \cos(\varphi_j - \theta_j)} d\varphi_j \]

Statistics:

\[p(m_j) = \frac{m_j}{\sigma^2} \exp \left\{ - \frac{m_j^2 + \rho_j^2}{2\sigma^2} \right\} I_0 \left(\frac{\rho_j m_j}{\sigma^2} \right) \]

\[SNR = \frac{\rho_j}{\sigma^2} \]

The magnitude, does not have a normal distribution!

Ricean Distribution!
Statistics:

\[p(m_j) = \frac{m_j}{\sigma^2} \exp \left\{ - \frac{m_j^2 + \rho_j^2}{2\sigma^2} \right\} I_0 \left(\frac{\rho_j m_j}{\sigma^2} \right) \]

\[SNR = \frac{\rho_j}{\sigma^2} \]

The magnitude, does not have a normal distribution!

Ricean Distribution!

Ricean \(\rightarrow \) Normal as the SNR \(\uparrow \)
Statistics:

The high SNR normality of \(m_j \) can be seen as

\[
m_j = \left[(y_{Rj})^2 + (y_{Ij})^2 \right]^{1/2} = \left[(\rho_j \cos \theta_j + \eta_{Rj})^2 + (\rho_j \sin \theta_j + \eta_{Rj})^2 \right]^{1/2} = \left[\rho_j^2 + (\eta_{Rj}^2 + \eta_{Ij}^2) + 2\rho_j (\eta_{Rj} \cos \theta_j + \eta_{Rj} \sin \theta_j) \right]^{1/2} = \rho_j \left[1 + 2 \frac{(\eta_{Rj} \cos \theta_j + \eta_{Rj} \sin \theta_j)}{\rho_j} + \frac{\eta_{Rj}^2 + \eta_{Ij}^2}{\rho_j^2} \right] \approx \rho_j + \varepsilon_j
\]

where \(\varepsilon_j = \eta_{Rj} \cos \theta_j + \eta_{Rj} \sin \theta_j \)

\(\varepsilon_j \sim N(0, \sigma^2) \)

\[
\sqrt{1+u^2} \approx 1 + u / 2, \quad |u| \ll 1
\]
Statistics:
We take n k-space arrays under different signal conditions.

Reconstruct each image.
Statistics:
We get n images under different signal conditions

Cartesian coordinates
Real-Imaginary

$t=1$
Statistics:
We get n images under different signal conditions

Cartesian coordinates
Real-Imaginary

voxel j

y_{Rjt} Real
y_{Ijt} Imaginary

$t=1$
Statistics:
We get n images under different signal conditions
Statistics:
We get \(n \) images under different signal conditions

\[j \]

\[m_{jt} \]

\[\varphi_{jt} \]

Phase discarded in a lot of MRI especially fMRI

Polar Coordinates
Magnitude-Phase

voxel \(j \)
Statistics:
We take n images under different signal conditions

Toy Example

Cartesian coordinates
Real-Imaginary

y_{Rjt}
y_{Ijt}
$t=1$
Statistics: \(y_t = \Omega S_t \)

We take \(n \) images under different signal conditions.
Statistics: Bivariate Normal to Ricean

The distribution of measurement t in voxel j is:

$$p(y_{Rjt}, y_{ljt}) = \frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[(y_{Rjt} - \rho_{jt} \cos \theta_{jt})^2 + (y_{ljt} - \rho_{jt} \sin \theta_{jt})^2 \right] \right\}$$

$$p(m_{jt}) = \frac{m_{jt}}{\sigma^2} \exp \left\{ - \frac{m_{jt}^2 + \rho_{jt}^2}{2\sigma^2} \right\} I_0 \left(\frac{\rho_{jt} m_{jt}}{\sigma^2} \right) \quad t = 1, \ldots, n$$

The goal is to estimate a functional form $\rho_{jt} = f(x_t | \beta_j)$ for the magnitude and possibly $\theta_{jt} = g(u_t | \gamma_j)$ for the phase from the data y_{Cj1}, \ldots, y_{Cjn} or m_{j1}, \ldots, m_{jn} in each voxel.

x is a vector of known “dial” settings β is a vector of unknown parameters.

$$\mu_{Rjt} = \omega_j s_{0t} = \rho_{jt} \cos \theta_{jt}$$

$$\mu_{ljt} = \omega_{p+j} s_{0t} = \rho_{jt} \sin \theta_{jt}$$

ω_j is j^{th} row of Ω

ω_{p+j} is $(p+j)^{th}$ row of Ω
Estimation:
Types of functions to estimate:

Data $y_{C1}, ..., y_{Cn}$ or $m_1, ..., m_n$ in each voxel. No j subscript.

<table>
<thead>
<tr>
<th>$f(x \mid \beta)$</th>
<th>x</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>1</td>
<td>ρ</td>
</tr>
<tr>
<td>$\rho \exp(-TE/T_2)$</td>
<td>TE</td>
<td>ρ, T_2</td>
</tr>
<tr>
<td>$S_0 \exp(-b'r'Dr)$</td>
<td>b, r</td>
<td>S_0, D</td>
</tr>
<tr>
<td>$\rho(1 - 2\exp(t/T_1))$</td>
<td>t</td>
<td>ρ, T_1</td>
</tr>
<tr>
<td>$x'\beta$</td>
<td>x'</td>
<td>β</td>
</tr>
</tbody>
</table>
Estimation: Ricean

Estimate parameters of function from magnitude data:

\[p(m_t) = \frac{m_t}{\sigma^2} \exp \left\{ -\frac{m_t^2 + (f(x_t | \beta))^2}{2\sigma^2} \right\} I_0 \left(\frac{f(x_t | \beta)m_t}{\sigma^2} \right) \]

\[L = \prod_{t=1}^{n} \frac{m_t}{\sigma^{2n}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + (f(x_t | \beta))^2 \right] \right\} \prod_{t=1}^{n} I_0 \left(\frac{f(x_t | \beta)m_t}{\sigma^2} \right) \]

\[LL = -n \log(\sigma^2) + \sum_{t=1}^{n} \log(m_t) \]

\[-\frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + (f(x_t | \beta))^2 \right] + \sum_{t=1}^{n} \log \left[I_0 \left(\frac{f(x_t | \beta)m_t}{\sigma^2} \right) \right] \]

Maximize \(LL \):

\[\frac{\partial LL}{\partial \beta} = 0 \quad \text{and} \quad \frac{\partial LL}{\partial \sigma^2} = 0 \]

Under \(H_1 \) and \(H_0 \)
Estimation: Large SNR Normal

Ricean

\[p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{ -\frac{m_t^2 + (f(x_t | \beta))^2}{2\sigma^2} \right\} I_0 \left(\frac{f(x_t | \beta)m_t}{\sigma^2} \right) \]

Normal as SNR ↑

\[p(m_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} [m_t - f(x_t | \beta)]^2 \right\} \]

Then use usual least squares estimation.

Maximize \(LL \):

\[\frac{\partial LL}{\partial \beta} = 0 \quad \text{and} \quad \frac{\partial LL}{\partial \sigma^2} = 0 \]

Under \(H_1 \) and \(H_0 \)

\[LL = -2n \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t | \beta)]^2 \]
Estimation: Large SNR Normal

\[LL = -2n \log(\sigma^2) + \frac{1}{2\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t | \beta)]^2 \]

Under \(H_I \):

\[\frac{\partial LL}{\partial \beta} = -\frac{2}{\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t | \beta)] \frac{\partial f(x_t | \beta)}{\partial \beta} \]

Under \(H_0 \): add Lagrange constraint \(h(\beta, \sigma^2) \) to \(LL \)

\[\frac{\partial LL}{\partial \beta} = -\frac{2}{\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t | \beta)] \frac{\partial f(x_t | \beta)}{\partial \beta} + \frac{\partial h(\beta, \sigma^2)}{\partial \beta} \]

Under \(H_0 \) and \(H_I \):

\[\frac{\partial LL}{\partial \sigma^2} = -\frac{2n}{\sigma^2} - \frac{1}{\sigma^4} \sum_{t=1}^{n} [m_t - f(x_t | \beta)]^2 \left(+ \frac{\partial h(\beta, \sigma^2)}{\partial \sigma^2} \right) \]

May require numerical maximization depending on \(f(x_t | \beta) \).
Estimation: Large SNR Normal

GLM: Does not require numerical maximization. X known

Under H_1: $\hat{\beta} = (X'X)^{-1}X'm$ \quad $\hat{\sigma}^2 = (y - X\hat{\beta})'(y_j - X\hat{\beta})/n$

Under H_0: $h(\beta, \sigma^2) = 2\psi'C\beta/\sigma^2$

$$\tilde{\beta} = \Psi(X'X)^{-1}X'm \quad \tilde{\sigma}^2 = (y - X\tilde{\beta})'(y - X\tilde{\beta})/n$$

$$\Psi = I - (X'X)^{-1}C'[C(X'X)^{-1}C']^{-1}C$$

Insert back into likelihoods and take ratio.

$$\lambda = L(\tilde{\beta}, \tilde{\sigma}^2) / L(\hat{\beta}, \hat{\sigma}^2)$$

This is how we get our usual t and F statistics.
Estimation: Large SNR Normal

DTI: Requires numerical maximization. b and r_t known

$$LL = -2n \log (\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{n} [m_t - S_0 \exp(-br_tD_t)]^2$$

Under H_1:

$$\frac{\partial LL}{\partial S_0} = -\frac{2}{\sigma^2} \sum_{t=1}^{n} [m_t - S_0 \exp(-br_tD_t)] \frac{\partial S_0 \exp(-br_tD_t)}{\partial S_0}$$

$$\hat{S}_0 \mid \hat{D} = \left[\frac{\sum_{t=1}^{n} m_t \exp(-br_tD_t)}{\sum_{t=1}^{n} \exp(-2br_tD_t)} \right]$$

$$\frac{\partial LL}{\partial D} = 0 \quad \text{Does not yield a closed form solution.}$$

Need numerical maximization with say Newton-Raphson or Levenberg-Marquardt.
Estimation: Large SNR Normal

Numerical maximization.

\[
LL = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t - \sqrt{f(x_t | \beta)^2 + \sigma^2} \right]^2
\]

\[\beta^{(0)} : \sum_{t=1}^{n} \left[m_t - f(x_t | \beta) \right]^2 \quad \text{Minimized by Levenberg-Marquardt}\]

\[(\sigma^2)^{(0)} = \sum_{t=1}^{n} \left[m_t - f(x_t | \beta^{(0)}) \right]^2 / n\]

\[\beta^{(r+1)} : \sum_{t=1}^{n} \left[m_t - \sqrt{f(x_t | \beta)^2 + (\sigma^2)^{(r)}} \right]^2 \quad \text{Minimize by Levenberg-Marquardt}\]

\[(\sigma^2)^{(0)} : \quad LL = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t - \sqrt{f(x_t | \beta)^2 + \sigma^2} \right]^2\]

Minimized by Newton-Raphson

\[\beta^{(0)}, (\sigma^2)^{(0)}, \beta^{(1)}, (\sigma^2)^{(1)}, ..., \beta^{(r+1)}, (\sigma^2)^{(r+1)} \quad \text{sequence converges to MLE!}\]
Estimation: Small SNR Ricean

\[
LL = -n \log(\sigma^2) + \sum_{t=1}^{n} \log(m_t) - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + (f(x_t | \beta))^2 \right] \\
+ \sum_{t=1}^{n} \log \left[I_0 \left(f(x_t | \beta)m_t / \sigma^2 \right) \right]
\]

Under \(H_1 \):
\[
A_t = f(x_t | \beta)m_t / \sigma^2
\]

\[
\frac{\partial LL}{\partial \beta} = \frac{1}{\sigma^2} \sum_{t=1}^{n} \left[m_t I_1(A_t) / I_0(A_t) - f(x_t | \beta) \right] \frac{\partial f(x_t | \beta)}{\partial \beta}
\]

Under \(H_0 \):
\[
\frac{\partial LL}{\partial \beta} = \frac{1}{\sigma^2} \sum_{t=1}^{n} \left[m_t I_1(A_t) / I_0(A_t) - f(x_t | \beta) \right] \frac{\partial f(x_t | \beta)}{\partial \beta} + \frac{\partial h(\beta, \sigma^2)}{\partial \beta}
\]

Under \(H_1 \) and \(H_0 \)
\[
\frac{\partial LL}{\partial \sigma^2} = \frac{1}{2\sigma^4} \left[m_t^2 + (f(x_t | \beta))^2 - 2m_tA_tf(x_t | \beta) - 2n\sigma^2 \right] \left(+ \frac{\partial h(\beta, \sigma^2)}{\partial \sigma^2} \right)
\]

No closed form solution. Requires numerical maximization!

Take magnitude variates \(m_1, ..., m_n \) that are Ricean distributed

\[
p(m_t) = \frac{m_t}{\sigma^2} \exp \left\{ -\frac{m_t^2 + f(x_t | \beta)^2}{2\sigma^2} \right\} I_0 \left(\frac{f(x_t | \beta)m_t}{\sigma^2} \right)
\]

Introduce latent phase variables \(\phi_1, ..., \phi_n \) such that

\[
p(m_t, \phi_t) = \frac{m_t}{2\pi\sigma^2} \exp \left\{ -(m_t^2 + f(x_t | \beta)^2 \right. \\
\left. \quad \quad \quad \quad \quad -2m_t f(x_t | \beta) \cos \phi_t \right\} / 2\sigma^2 \]

and

\[
LL = -n \log(2\pi\sigma^2) + \sum_{t=1}^{n} \log(m_t) \\
\quad - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta)^2 - 2m_t f(x_t | \beta) \cos(\phi_t) \right]
\]

Estimation: Small SNR

EM Algorithm. Iterative.

\[
LL = -n \log(2\pi\sigma^2) + \sum_{t=1}^{n} \log m_t - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta)^2 - 2m_t f(x_t | \beta) \cos \phi_t \right]
\]

E Step: Let \(Y_m = (m_1, \ldots, m_n), Y_\phi = (\phi_1, \ldots, \phi_n), Y_x = (x_1, \ldots, x_n) \)

given \(\beta^{(r)}, (\sigma^2)^{(r)} \): Initial values from normal GLM

\[
E[L_c(\beta, \sigma^2 | Y_m, Y_\phi, Y_x) | Y_m, Y_x, \beta^{(r)}, (\sigma^2)^{(r)}] = \\
- n \log(\sigma^2)^{(r)} - \frac{1}{2(\sigma^2)^{(r)}} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta^{(r)})^2 - 2m_t f(x_t | \beta^{(r)}) A_t^{(r)} \right] \\
A_t^{(r)} = f(x_t | \beta^{(r)}) m_t / (\sigma^2)^{(r)}
\]

with respect to \(p(Y_\phi | Y_m, Y_x, \beta^{(r)}, (\sigma^2)^{(r)}) = \prod_{t=1}^{n} p(\phi_t | m_t, \beta^{(r)}, (\sigma^2)^{(r)}) \)

Estimation: Small SNR
EM Algorithm. Iterative.

M Step:

given $\beta^{(r)}$, $(\sigma^2)^{(r)}$:

$$(\sigma^2)^{(r+1)} = \frac{1}{2n} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta^{(r)})^2 - 2m_t f(x_t | \beta^{(r)}) A_t^{(r)} \right]$$

$$A_t^{(r)} = f(x_t | \beta^{(r)}) m_t / (\sigma^2)^{(r)}$$

$$\beta^{(r+1)} : \text{minimize} \sum_{t=1}^{n} \left[f(x_t | \beta)^2 - m_t A_t^{(r)} \right]^2 \quad \text{given} \quad (\sigma^2)^{(r+1)}$$

$\beta^{(0)}, (\sigma^2)^{(0)}, \beta^{(1)}, (\sigma^2)^{(1)}, \ldots, \beta^{(r+1)}, (\sigma^2)^{(r+1)}$ sequence converges to MLE!

Estimation: Small SNR EM Algorithm.

\[f(S_0, D | r, b) = S_0 \exp(-br'Dr) \]

Fractional Anisotropy, FA

Signal-to-Noise Ratio, \(S_0/\sigma^2 \)

Estimation: Bivariate Normal

Magnitude Image

Phase Image

voxel j

\[m_j = \sqrt{y_{Rj}^2 + y_{ij}^2} \]

\[\varphi_j = \tan^{-1}\left(\frac{y_{ij}}{y_{Rj}}\right) \]
Statistics:
We get n images under different signal conditions.

Polar Coordinates
Magnitude-Phase

voxel j

M_{jt}

Φ_{jt}

$t=1$
Estimation: All SNRs Bivariate Normal

\[
\begin{pmatrix}
 y_{Rt} \\
y_{It}
\end{pmatrix} = \begin{pmatrix}
 \rho_t \cos \theta_t \\
 \rho_t \sin \theta_t
\end{pmatrix} + \begin{pmatrix}
 \eta_{Rt} \\
 \eta_{It}
\end{pmatrix}, \quad \begin{pmatrix}
 \eta_{Rt} \\
 \eta_{It}
\end{pmatrix} \sim N(0, \Sigma)
\]

\[
p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos \theta_t)^2 + (y_{It} - \rho_t \sin \theta_t)^2 \right] \right\}
\]

\[
p(m_t, \varphi_t) = \frac{m_t}{2\pi\sigma^2} \exp \left\{ -\frac{1}{2\sigma^2} \left[m_t^2 + \rho_t^2 - 2m_t \rho_t \cos(\varphi_t - \theta_t) \right] \right\}
\]

\[
\rho_t = f(x_t \mid \beta) \quad \text{and} \quad \theta_t = g(u_t \mid \gamma)
\]

\[
LL = -n \log(2\pi\sigma^2) + \sum_{t=1}^{n} \log(m_t)
\]

\[
- \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + f(x_t \mid \beta)^2 - 2m_t f(x_t \mid \beta) \cos(\varphi_t - g(u_t \mid \gamma)) \right]
\]
Estimation: All SNR Bivariate Normal

\[LL = -n \log(2\pi\sigma^2) + \sum_{t=1}^{n} \log(m_t) \]

\[- \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta)^2 - 2m_t f(x_t | \beta) \cos(\varphi_t - g(u_t | \gamma)) \right] \]

\[\frac{\partial LL}{\partial \beta} = \frac{1}{\sigma^2} \sum_{t=1}^{n} \left[m_t \cos(\varphi_t - g(u_t | \gamma)) - f(x_t | \beta) \right] \frac{\partial f(x_t | \beta)}{\partial \beta} \]

\[\frac{\partial LL}{\partial \gamma} = \frac{1}{\sigma^2} \sum_{t=1}^{n} \left[m_t f(x_t | \beta) \sin(\varphi_t - g(u_t | \gamma)) \right] \frac{\partial g(u_t | \gamma)}{\partial \gamma} \]

\[\frac{\partial LL}{\partial \sigma^2} = \frac{n}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=1}^{n} \left[m_t^2 + f(x_t | \beta)^2 - 2m_t f(x_t | \beta) \cos(\varphi_t - g(u_t | \gamma)) \right] \]

\(\sigma^2 \) can be uniquely solved for given \(\beta, \gamma \)
Estimation:
Time series are complex, bivariate with phase coupled means.

The y_R and y_I time courses have related info! From actual human data!
Estimation:
Time series are complex, bivariate with phase coupled means.

An FT of this ts would show a peak at task freq.

Magnitude: Task related magnitude changes!

Phase: Task related phase changes!

Periodicity!

Estimation:
Magnitude and or phase change.

\[\rho_t = x'_t \beta \text{ and } \theta_t = u'_t \gamma \]

Estimation:
Magnitude and or phase change.

\[\rho_t = x_t' \beta \text{ and } \theta_t = u_t' \gamma \]

Estimation:
Magnitude and or phase change.

\[\rho_t = x'_t \beta \text{ and } \theta_t = u'_t \gamma \]

Estimation: All SNR

GLM:

\[\rho_t = x_t' \beta \quad \text{and} \quad \theta_t = u_t' \gamma \]

\[LL = -n \log(2\pi\sigma^2) + \sum_{t=1}^{n} \log(m_t) \]

\[H_0 : C \beta = 0 \quad \text{vs.} \quad H_1 : C \beta \neq 0 \]

\[D \gamma = 0 \quad D \gamma \neq 0 \]

Maximize \(LL \): under \(H_1 \) and \(H_0 \)

\[\beta^{(0)} : \text{initial value} \]

\[\hat{\gamma}^{(r)} = \left(\hat{Z}'(r) \hat{Z}(r) \right)^{-1} \hat{Z}'(r) \phi^{(r)} \]

\[\hat{\beta}^{(r+1)} = (X'X)^{-1} X'm^{(r)}_* \]

\[(\hat{\sigma}^2)^{(r+1)} = \frac{1}{2n} \sum_{t=1}^{n} \left[(m - X \hat{\beta}^{(r+1)})' (m - X \hat{\beta}^{(r+1)}) \right] + 2(m - \hat{m}^{(r+1)}_*)' X \hat{\beta}^{(r+1)} \]

\(\varphi^{(r)}_* \) has elements \(\varphi_t \sqrt{m_t x_t' \hat{\beta}^{(r)}(r)} \)

\(\hat{Z}'(r) \) has rows \(u_t' \sqrt{m_t x_t' \hat{\beta}^{(r)}(r)} \)

\(m^{(r)}_* \) has elements \(m_t \cos(\varphi_t - u_t' \hat{\gamma}^{(r)}(r)) \)

Estimation: GLM:

20s off + 16 × (8 s on 8 s off), 276 TRs
12 axial slices, 96 × 96, FOV = 24 cm
TH = 2.5 mm, TR = 1 s, TE = 34.6 ms
FA = 45°, BW = 125 kHz, ES = .708 ms

20s off + 16 × (8 s on 8 s off), 276 TRs
10 axial slices, 96 × 96, FOV = 24 cm
TH = 2.5 mm, TR = 1 s, TE = 42.8 ms
FA = 45°, BW = 125 kHz, ES = .768 ms

20s off + 10 × (8 s on 8 s off), 180 TRs
9 axial slices, 64 × 64, FOV = 24 cm
TH = 3.8 mm, TR = 1 s, TE = 26.0 ms
FA = 45°, BW = 125 kHz, ES = .680 ms

Hahn, Nencka, Rowe: In progress.
Discussion:

• Not clear how much improvement from Ricean distribution.

• Improvements will show below SNR=5. High b-values.

• Other factors hinder it.
 Dynamic field changes
 Image Warping
 Motion
 Image Processing

• Should also use phase for complete data model.

• More biological info extracted with use of phase.
Discussion:

1. Image Reconstruction
2. Statistics - Ricean & Normal
3. Estimation - Ricean & Normal
4. Estimation - Bivariate Normal
5. Discussion

Further research is needed
Thank You

Questions?