In fMRI a Dual Echo Time EPI Pulse Sequence Can Induce Sources of Error in Dynamic Magnetic Field Maps

A. D. Hahn¹, A. S. Nencka¹ and D. B. Rowe²,¹

¹Medical College of Wisconsin, Milwaukee, WI, United States
²Marquette University, Milwaukee, WI, United States
Introduction

• Fast imaging sequences such as Echo Planar Imaging (EPI) expose imperfections in the magnetic environment
 – Long exposure, often 50, 60, 70+ milliseconds of near-continuous readout
 – Long delay between adjacent k-space points;

• Results of EPI acquisitions are generally the target for optimization due to
 – Low SNR
 – Artifact prone
 – Common target for statistical analysis (fMRI)
• B_0 field off-resonance
 (resonance frequency offset)
 – Caused by spatially varying magnetic susceptibility
 – Phase accrues over the readout time, leading to warping in the transformed image
 – Difficult to register functional data to anatomical volumes
 – Usually considered temporally invariant
Dynamic Implications

• In reality, variation occurs during a series of EPI data, such as in fMRI\(^1,2\)
 – Leads to variable warping, potentially confounding motion correction
 – variable phase accrual, thus increased temporal phase variance
 – Serious confound to complex-valued statistical analysis\(^1\)

\(^1\)AD Hahn et al., NIMG 44:742-52, 2009
Dual Echo Time EPI

• Resonance offset estimated from phase difference between images with different TE^2

• Alternate TE over an entire series, as in Hutton, et al1, for Dynamic estimation

$$\Delta \hat{\omega}_t = \frac{\text{arg} \left(e^{i\hat{\phi}} e^{-i\hat{\phi}_{t-1}} \right)}{TE_t - TE_{t-1}}$$

$\Delta \hat{\omega}_t$ = estimated frequency offset at time t

$\hat{\phi}$ = estimated phase at time t

$t = 1, ..., N - 1$

1C Hutton et al., NIMG 16:217-240, 2002
2PJ Reber et al., MRM 39:328-330, 1998
Suffers from logical flaw as a dynamic method

- Formula for field offset operates assuming this offset is equal during acquisition of each
- If assumption holds, field can never change
- Otherwise the estimated field will be erroneous

\[
\Delta \hat{\omega}_t = \frac{\text{arg}(e^{i\hat{\phi}_t} e^{-i\hat{\phi}_{t-1}})}{TE_t - TE_{t-1}} \\
\Delta \hat{\omega}_{t+1} = \frac{\text{arg}(e^{i\hat{\phi}_{t+1}} e^{-i\hat{\phi}_t})}{TE_{t+1} - TE_t}
\]

\[
\Delta \hat{\omega}_t = \Delta \hat{\omega}_{t+1}
\]
Moving Racetrack Trajectory

- Modified EPI retracing multiple k-space lines at a constant ΔTE within a single RF shot
- Red paths indicate the first pass and green the second acquisitions of the line
- Generally low resolution

\[
\Delta \hat{\omega}_t = \text{arg} \left(e^{i \hat{\phi}_{,pass_2}} e^{-i \hat{\phi}_{,pass_1}} \right) \frac{nt_{esp}}{\Delta t}
\]

$\Delta \hat{\omega}_t$ = estimated frequency offset at time t

$\hat{\phi}_{,pass N}$ = estimated phase at time t for pass N

t_{esp} = echo spacing time

$t=1,\ldots,N-1$

1V Roopchansingh et al., MRM 50:839-843, 2003
Expected Accuracy

- Image phase measurement includes $N(0,\sigma^2)$ noise, η_1, η_2
- ϕ_e represents all other phase errors
 - Change in ϕ_0 between images
 - Any response to variable accumulation, such as intra-acquisition motion
 - Any difference in the field during acquisition of both images

- Difference between TEs is important as noise amplifies with decreasing difference
 \[\Delta \hat{\omega} = \arg\left(e^{i(\phi_2 + \eta_2)} e^{-i(\phi_1 + \eta_1)} e^{i\phi_e} \right) / (TE_2 - TE_1) \]
Methods

• Test performance of dual echo time EPI against MRTT, which is not susceptible to the same errors

• Two scans performed, one with phantom and the other human
 – MRTT acquired at full resolution
 (all k-space acquired twice)
 – TE also increased by 1.872ms on every other image
Methods

- **Scan parameters**
 - 64×64
 - 24cm FOV
 - Sl. Thickness = 3.8cm
 - TE = 44.3
 - TR = 1
 - Flip angle = 45 degrees
 - Reps = 276;

ΔTE was equal in both scans to preserve equal SNR

- **Phantom scanning** (spherical agar phantom) involved no involvement beyond scanner operation

- A single time series in a single human subject was acquired. Subject was told only to lay still and rest

- After estimation of raw field maps, each was fit using a 7th order polynomial to reduce noise

Program #5062: In fMRI a Dual Echo Time EPI Pulse Sequence can Induce Sources of Error in Dynamic Magnetic Field Maps
Results

Average power spectrum of voxel time series in a 5×5 voxel region for phantom (left) and human (right). Results of Dual Echo Time EPI data shown in blue and MRTT in red.

- Both plots show elevated power in the dual TE case, even at specific frequencies in the phantom.
 - Likely scanner instability or variable RF pulse phase.
- Human results are elevated across the whole spectrum, with the greatest difference at lower frequencies where expected physiologic response is likely being amplified.
Results

• Shows disparity between MRTT and dual TE maps

• Disparities more apparent & significant in human data
 – Suggests that violating the assumption of field equality has severe consequences

Maps of t-statistics from a paired-difference test between field maps estimated using MRTT and the dual echo time methods. Statistics for phantom maps shown left and human maps right

Program #5062: In fMRI a Dual Echo Time EPI Pulse Sequence can Induce Sources of Error in Dynamic Magnetic Field Maps
Discussion

• The dual echo technique produces different results than the MRTT, but correctness of either is uncertain

• Appropriateness of dynamic field correction
 – If correction may be error prone, must weigh cost to benefit
 – Most valuable for complex analysis
 – Newer, more robust techniques
Final Thought

- The dual echo EPI method should still be robust for creating static estimations, especially when averaging
 - Probably the easiest technique to implement

- Acknowledgements:
 - This work was supported in part by NIH EB00215 and EB007827