Class 29

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 11.1 and 11.2

Lecture Chapter 11.3

Review for Final Exam
3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data

Bivariate data: The values of two different variables that are obtained from the same population element.

Qualitative-Qualitative
Qualitative-Quantitative
Quantitative-Quantitative

When Qualitative-Qualitative
Cross-tabulation tables or contingency tables
Sometimes called r by c ($r \times c$)
3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: two qualitative

Example:
Construct a 2×3 table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>M</td>
<td>LA</td>
</tr>
<tr>
<td>Argento</td>
<td>F</td>
<td>BA</td>
</tr>
<tr>
<td>Baker</td>
<td>M</td>
<td>LA</td>
</tr>
<tr>
<td>Bennett</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Brand</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Brock</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Chun</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Crain</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Cross</td>
<td>F</td>
<td>BA</td>
</tr>
<tr>
<td>Ellis</td>
<td>F</td>
<td>BA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeney</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Flanigan</td>
<td>M</td>
<td>LA</td>
</tr>
<tr>
<td>Hodge</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Holmes</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Jopson</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Kee</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Kleeberg</td>
<td>M</td>
<td>LA</td>
</tr>
<tr>
<td>Light</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Linton</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Lopez</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>McGowan</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Mowers</td>
<td>F</td>
<td>BA</td>
</tr>
<tr>
<td>Ornt</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Palmer</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Pullen</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>Rattan</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Sherman</td>
<td>F</td>
<td>LA</td>
</tr>
<tr>
<td>Small</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Tate</td>
<td>M</td>
<td>BA</td>
</tr>
<tr>
<td>Yamamoto</td>
<td>M</td>
<td>LA</td>
</tr>
</tbody>
</table>

M = male
F = female
LA = liberal arts
BA = business admin
T = technology

Figures from Johnson & Kuby, 2012.

Rowe, D.B.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Example: Construct a 2×3 table.

Each in group of 300 students identified as male or female and asked if preferred classes in math-science, social science, or humanities.

Sample Results for Gender and Subject Preference

<table>
<thead>
<tr>
<th>Gender</th>
<th>Math-Science (MS)</th>
<th>Social Science (SS)</th>
<th>Humanities (H)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (M)</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>122</td>
</tr>
<tr>
<td>Female (F)</td>
<td>35</td>
<td>72</td>
<td>71</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>113</td>
<td>115</td>
<td>300</td>
</tr>
</tbody>
</table>

Figure from Johnson & Kuby, 2012.

Rowe, D.B.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Test of Independence

Is “Preference for math-science, social science, or humanities” … “independent of the gender of a college student?”

Sample Results for Gender and Subject Preference

<table>
<thead>
<tr>
<th>Gender</th>
<th>Math-Science (MS)</th>
<th>Social Science (SS)</th>
<th>Humanities (H)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (M)</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>122</td>
</tr>
<tr>
<td>Female (F)</td>
<td>35</td>
<td>72</td>
<td>71</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>113</td>
<td>115</td>
<td>300</td>
</tr>
</tbody>
</table>

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square

11.3 Inferences Concerning Contingency Tables

Test of Independence

Is “Preference for math-science, social science, or humanities” … “independent of the gender of a college student?”

There is a Hypothesis test (of independence) to determine this. Is Favorite Subject independent of Gender.

Similar to Example with the Die, now have rows i and columns j.

Observed values, O_{ij}’s.

\[
\chi^2 = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
\]

What are E_{ij}’s?

<table>
<thead>
<tr>
<th>Gender</th>
<th>Math–Science (MS)</th>
<th>Social Science (SS)</th>
<th>Humanities (H)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (M)</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>122</td>
</tr>
<tr>
<td>Female (F)</td>
<td>35</td>
<td>72</td>
<td>71</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>113</td>
<td>115</td>
<td>300</td>
</tr>
</tbody>
</table>

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Test of Independence

\[\chi^2* = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \]

D of F for Contingency Tables:

\[df = (r - 1)(c - 1) \quad (11.4) \]

Where does this formula for \(E_{ij} \)'s come from?

\[E_{ij} = \frac{\text{row total} \times \text{column total}}{\text{grand total}} = \frac{R_iC_j}{n} \quad (11.5) \]

Expected Frequencies for Contingency Tables

\[r > 1, c > 1 \]
4: Probability

4.5 Independent Events

Independent events: Two events are independent if the occurrence or nonoccurrence of one gives us no information about the likeliness of occurrence for the other.

In algebra:

\[P(A) = P(A \mid B) = P(A \mid \text{not } B) \]

In words:

1. Prob of \(A \) unaffected by knowledge that \(B \) has occurred, not occurred, or no knowledge.
2. …
3. …
4: Probability
4.5 Independent Events

Two events A and B are independent if the probability of one is not “influenced” by the occurrence or nonoccurrence of the other.

Two Events A and B are independent if:

1. $P(A) = P(A|B)$
2. $P(B) = P(B|A)$
3. $P(A \text{ and } B) = P(A) \cdot P(B)$

Examples:?
11: Applications of Chi-Square

11.3 Inferences Concerning Contingency Tables

Test of Independence

Where does this formula for \(E_{ij} \)'s come from?

\[
E_{ij} = \frac{R_i C_j}{n}
\]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Math–Science (MS)</th>
<th>Social Science (SS)</th>
<th>Humanities (H)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (M)</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>122</td>
</tr>
<tr>
<td>Female (F)</td>
<td>35</td>
<td>72</td>
<td>71</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>113</td>
<td>115</td>
<td>300</td>
</tr>
</tbody>
</table>

If Favorite Subject (column variable) is independent of Gender (row variable), then

\[
P(\text{MS} \mid M) = P(\text{MS} \mid F) = P(\text{MS})
\]

\[
P(A) = P(A \mid B)
\]

\[
P(A \text{ and } B) = P(A) \cdot P(B)
\]

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Test of Independence

Where does this formula for E_{ij}’s come from?

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>SS</th>
<th>H</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>29.28</td>
<td>45.95</td>
<td>46.77</td>
<td>122.00</td>
</tr>
<tr>
<td>Female</td>
<td>42.72</td>
<td>67.05</td>
<td>68.23</td>
<td>178.00</td>
</tr>
<tr>
<td>Total</td>
<td>72.00</td>
<td>113.00</td>
<td>115.00</td>
<td>300.00</td>
</tr>
</tbody>
</table>

If Favorite Subject is independent of Gender, then

\[
P(M \text{ and } MS) = P(M)P(MS) = (122/300)(72/300)
\]

\[
E(M \text{ and } MS) = nP(M)P(MS) = 300(122/300)(72/300)
\]

\[
E(M \text{ and } MS) = 122 \times 72 / 300
\]

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Test of Independence

Where does this formula for E_{ij}’s come from?

$$E_{ij} = \frac{R_i C_j}{n}$$

<table>
<thead>
<tr>
<th>Gender</th>
<th>MS</th>
<th>SS</th>
<th>H</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>37 (29.28)</td>
<td>41 (45.95)</td>
<td>44 (46.77)</td>
<td>122</td>
</tr>
<tr>
<td>Female</td>
<td>35 (42.72)</td>
<td>72 (67.05)</td>
<td>71 (68.23)</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>113</td>
<td>115</td>
<td>300</td>
</tr>
</tbody>
</table>

If Favorite Subject is independent of Gender, then

$$\chi^2* = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} < \chi^2(2, 0.05)$$

$$\alpha = 0.05$$

$$\chi^2* = 4.604 < \chi^2(2, 0.05) = 5.99$$

$$df = (r - 1)(c - 1) = (2 - 1)(3 - 1)$$

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square
11.3 Inferences Concerning Contingency Tables

Test of Independence

Expected Frequencies for an $r \times c$ Contingency Table

<table>
<thead>
<tr>
<th>Row</th>
<th>1</th>
<th>2</th>
<th>jth column</th>
<th>...</th>
<th>c</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{R_1 \times C_1}{n}$</td>
<td>$\frac{R_1 \times C_2}{n}$</td>
<td>...</td>
<td>$\frac{R_1 \times C_i}{n}$</td>
<td>...</td>
<td>$\frac{R_1 \times C_c}{n}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{R_2 \times C_1}{n}$</td>
<td>$\frac{R_2 \times C_2}{n}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ith row</td>
<td>$\frac{R_i \times C_1}{n}$</td>
<td>$\frac{R_i \times C_2}{n}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r</td>
<td>$\frac{R_r \times C_1}{n}$</td>
<td>$\frac{R_r \times C_2}{n}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total: C_1 C_2 ... C_i n

$$E_{ij} = \frac{R_i C_j}{n}$$

$$\chi^2 = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$< \chi^2((r - 1)(c - 1), \alpha)$$

Figure from Johnson & Kuby, 2012.
11: Applications of Chi-Square

11.3 Inferences Concerning Contingency Tables

Test of Homogeneity

Is the distribution within all rows the same for all rows?

<table>
<thead>
<tr>
<th>Residence</th>
<th>Governor’s Proposal</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favor</td>
<td>Oppose</td>
<td>Total</td>
</tr>
<tr>
<td>Urban</td>
<td>143</td>
<td>57</td>
<td>200</td>
</tr>
<tr>
<td>Suburban</td>
<td>98</td>
<td>102</td>
<td>200</td>
</tr>
<tr>
<td>Rural</td>
<td>13</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
<td>246</td>
<td>500</td>
</tr>
</tbody>
</table>

If so, then

\[P(F \text{ and } Urban) = P(F)P(U) \]

\[E(F \text{ and } Urban) = nP(F)P(U) \]

\[E(F \text{ and } Urban) = 500 \left(\frac{254}{500} \right) \left(\frac{200}{500} \right) \]
11: Applications of Chi-Square

11.3 Inferences Concerning Contingency Tables

Test of Homogeneity

Is the distribution within all rows the same for all rows?

\[E_{ij} = \frac{R_i C_j}{n} \]

<table>
<thead>
<tr>
<th>Residence</th>
<th>Governor’s Proposal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favor</td>
<td>Oppose</td>
</tr>
<tr>
<td>Urban</td>
<td>143</td>
<td>57</td>
</tr>
<tr>
<td>Suburban</td>
<td>98</td>
<td>102</td>
</tr>
<tr>
<td>Rural</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
<td>246</td>
</tr>
</tbody>
</table>

\[\chi^2* = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} < \chi^2((r - 1)(c - 1), \alpha) \]

\[\alpha = 0.05 \]

\[df = (r - 1)(c - 1) = (3 - 1)(2 - 1) \]
Chapter 11: Applications of Chi-Square

Questions?

Homework: Chapter 11 # 3, 5, 11, 15, 21, 49, 53
Review Chapters 9 and 10
(Final Exam Chapters)

Just the highlights!
Recap Chapter 9
9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

In Chapter 8, we performed hypothesis tests on the mean by

1) assuming that \bar{x} was normally distributed (n “large”),

2) assuming the hypothesized mean μ_0 were true,

3) assuming that σ was known, so that we could form

$$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

which with 1) – 3) has standard normal dist.
9: Inferences Involving One Population

9.1 Inference about the Mean μ (σ Unknown)

However, in real life, we never know σ for so we would like to estimate σ by s, then use

$$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

so we would like to estimate σ by s, then use

$$t^* = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}.$$

But t^* does not have a standard normal distribution.

It has what is called a Student t-distribution.
9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)
Using the t-Distribution Table

Finding critical value from a Student t-distribution, $df=n-1$

t(df, α), t value with α area larger than it

with df degrees of freedom

Table 6
Appendix B
Page 719.

Figure from Johnson & Kuby, 2012.
9: Inferences Involving One Population

9.1 Inference about the Mean μ (σ Unknown)

Example: Find the value of $t(10,0.05)$, $df=10$, $\alpha=0.05$.

Table 6

Appendix B

Page 719.

Go to 0.05 One Tail column and down to 10 df row.

Figures from Johnson & Kuby, 2012.
9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

Recap 9.1:
Essentially have new critical value, $t(df, \alpha)$ to look up in a table when σ is unknown. Used same as before.

σ assumed known

$$
\bar{x} \pm z(\alpha / 2) \frac{\sigma}{\sqrt{n}}
$$

$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$

σ assumed unknown

$$
\bar{x} \pm t(df, \alpha / 2) \frac{s}{\sqrt{n}}
$$

$$
t^* = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}
$$
We talked about a Binomial experiment with two outcomes.

\[P(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

where:
- \(n \) is the number of trials,
- \(x \) is the number of successes,
- \(p \) is the probability of success.

For a sample binomial probability:

\[p' = \frac{x}{n} \]

where \(x \) is the number of successes in \(n \) trials.
In Statistics, \(\text{mean}(cx) = c \mu \) and \(\text{variance}(cx) = c^2 \sigma^2 \).

With \(p' = \frac{x}{n} \), the constant is \(c = \frac{1}{n} \), and

\[
\text{mean}\left(\frac{x}{n} \right) = \left(\frac{1}{n} \right) \text{mean}(x) = \left(\frac{1}{n} \right) np = p = \mu_{p'}
\]

and the variance of \(p' = \frac{x}{n} \) is variance

\[
\left(\frac{x}{n} \right) = \frac{\sigma^2}{n^2} = \frac{p(1-p)}{n}
\]

standard error of \(p' = \frac{x}{n} \) is

\[
\sigma_{p'} = \sqrt{\frac{\sigma^2}{n^2}} = \sqrt{\frac{p(1-p)}{n}}.
\]
9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

That is where 1. and 2. in the green box below come from

If a random sample of size \(n \) is selected from a large population with \(p = P(\text{success}) \), then the sampling distribution of \(p' \) has:

1. A mean \(\mu_p \), equal to \(p \)

2. A standard error \(\sigma_p \), equal to \(\sqrt{\frac{p(1-p)}{n}} \)

3. An approximately normal distribution if \(n \) is sufficiently “large.”

Rowe, D.B.
9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

For a confidence interval, we would use

\[
p' - z(\alpha / 2)\sqrt{\frac{p'q'}{n}} \quad \text{to} \quad p' + z(\alpha / 2)\sqrt{\frac{p'q'}{n}}
\]

where \(p' = \frac{x}{n} \) and \(q' = (1 - p') \).

Since we didn’t know the true value for \(p \), we estimate it by \(p' \). This is of the form \(\text{point estimate} \pm \text{some amount} \).
9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

Determining the Sample Size

Using the error part of the CI, we determine the sample size \(n \).

Maximum Error of Estimate for a Proportion

\[
E = z\left(\frac{\alpha}{2}\right) \sqrt{\frac{p'(1-p')}{n}}
\]

(9.7)

Sample Size for 1- \(\alpha \) Confidence Interval of \(p \)

\[
 n = \frac{[z(\alpha/2)]^2 p^* (1 - p^*)}{E^2}
\]

(9.8)

where \(p^* \) and \(q^* \) are provisional values used for planning.

From prior data, experience, gut feelings, séance. Or use 1/2.
9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion

\[H_0: p \geq p_0 \text{ vs. } H_a: p < p_0 \]

\[H_0: p \leq p_0 \text{ vs. } H_a: p > p_0 \]

\[H_0: p = p_0 \text{ vs. } H_a: p \neq p_0 \]

Test Statistic for a Proportion \(p \)

\[
z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \quad \text{with} \quad p' = \frac{x}{n}
\]

(9.9)
9: Inferences Involving One Population

9.3 Inference about the Variance and Standard Deviation

We can perform hypothesis tests on the variance.

\(H_0: \sigma^2 \geq \sigma_0^2 \) vs. \(H_a: \sigma^2 < \sigma_0^2 \)

\(H_0: \sigma^2 \leq \sigma_0^2 \) vs. \(H_a: \sigma^2 > \sigma_0^2 \)

\(H_0: \sigma^2 = \sigma_0^2 \) vs. \(H_a: \sigma^2 \neq \sigma_0^2 \)

For this hypothesis test, use the \(\chi^2 \) distribution

\[\mu = df \]

\[\sigma^2 = 2df \]

1. \(\chi^2 \) is nonnegative
2. \(\chi^2 \) is not symmetric, skewed to right
3. \(\chi^2 \) is distributed to form a family each determined by \(df=n-1 \).

Figure from Johnson & Kuby, 2012.
9: Inferences Involving One Population
9.4 Inference about the Variance and Standard Deviation

Test Statistic for Variance (and Standard Deviation)

\[\chi^2* = \frac{(n - 1)s^2}{\sigma^2_0}, \quad \text{with } df = n - 1. \]

(9.10)

Will also need critical values.

\[P(\chi^2 > \chi^2(df, \alpha)) = \alpha \]

Table 8
Appendix B
Page 721

Figure from Johnson & Kuby, 2012.
9: Inferences Involving One Pop.

Example: Find $\chi^2(20,0.05)$.

Table 8, Appendix B, Page 721.

<table>
<thead>
<tr>
<th>df</th>
<th>0.005</th>
<th>0.01</th>
<th>0.025</th>
<th>0.05</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
<th>0.995</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000393</td>
<td>0.000157</td>
<td>0.000982</td>
<td>0.00393</td>
<td>0.0158</td>
<td>0.0102</td>
<td>0.0455</td>
<td>1.32</td>
<td>2.71</td>
<td>3.84</td>
<td>5.02</td>
<td>6.63</td>
<td>7.88</td>
</tr>
<tr>
<td>2</td>
<td>0.0100</td>
<td>0.0201</td>
<td>0.0506</td>
<td>0.103</td>
<td>0.211</td>
<td>0.575</td>
<td>1.39</td>
<td>2.77</td>
<td>4.61</td>
<td>5.99</td>
<td>7.38</td>
<td>9.21</td>
<td>10.6</td>
</tr>
<tr>
<td>3</td>
<td>0.0717</td>
<td>0.115</td>
<td>0.216</td>
<td>0.352</td>
<td>0.584</td>
<td>1.21</td>
<td>2.37</td>
<td>4.11</td>
<td>6.25</td>
<td>7.81</td>
<td>9.35</td>
<td>11.3</td>
<td>12.8</td>
</tr>
<tr>
<td>4</td>
<td>0.207</td>
<td>0.297</td>
<td>0.484</td>
<td>0.711</td>
<td>1.06</td>
<td>1.92</td>
<td>3.36</td>
<td>5.39</td>
<td>7.78</td>
<td>9.49</td>
<td>11.1</td>
<td>13.3</td>
<td>14.9</td>
</tr>
<tr>
<td>5</td>
<td>0.412</td>
<td>0.554</td>
<td>0.831</td>
<td>1.15</td>
<td>1.61</td>
<td>2.67</td>
<td>4.35</td>
<td>6.63</td>
<td>9.24</td>
<td>11.1</td>
<td>12.8</td>
<td>15.1</td>
<td>16.7</td>
</tr>
<tr>
<td>6</td>
<td>0.676</td>
<td>0.872</td>
<td>1.24</td>
<td>1.64</td>
<td>2.20</td>
<td>3.45</td>
<td>5.35</td>
<td>7.84</td>
<td>10.6</td>
<td>12.6</td>
<td>14.4</td>
<td>16.8</td>
<td>18.5</td>
</tr>
<tr>
<td>7</td>
<td>0.989</td>
<td>1.24</td>
<td>1.69</td>
<td>2.17</td>
<td>2.83</td>
<td>4.25</td>
<td>6.35</td>
<td>9.04</td>
<td>12.0</td>
<td>14.1</td>
<td>16.0</td>
<td>18.5</td>
<td>20.3</td>
</tr>
<tr>
<td>8</td>
<td>1.34</td>
<td>1.65</td>
<td>2.18</td>
<td>2.73</td>
<td>3.49</td>
<td>5.07</td>
<td>7.34</td>
<td>10.2</td>
<td>13.4</td>
<td>15.3</td>
<td>17.5</td>
<td>20.1</td>
<td>22.0</td>
</tr>
<tr>
<td>9</td>
<td>1.73</td>
<td>2.09</td>
<td>2.70</td>
<td>3.33</td>
<td>4.17</td>
<td>5.90</td>
<td>8.34</td>
<td>11.4</td>
<td>14.7</td>
<td>16.9</td>
<td>19.0</td>
<td>21.7</td>
<td>23.6</td>
</tr>
<tr>
<td>10</td>
<td>2.16</td>
<td>2.56</td>
<td>3.25</td>
<td>3.94</td>
<td>4.87</td>
<td>6.74</td>
<td>9.34</td>
<td>12.5</td>
<td>16.0</td>
<td>18.3</td>
<td>20.5</td>
<td>23.2</td>
<td>25.2</td>
</tr>
<tr>
<td>11</td>
<td>2.60</td>
<td>3.05</td>
<td>3.82</td>
<td>4.57</td>
<td>5.58</td>
<td>7.58</td>
<td>10.34</td>
<td>13.7</td>
<td>17.3</td>
<td>19.7</td>
<td>21.9</td>
<td>24.7</td>
<td>26.8</td>
</tr>
<tr>
<td>12</td>
<td>3.07</td>
<td>3.57</td>
<td>4.40</td>
<td>5.23</td>
<td>6.30</td>
<td>8.44</td>
<td>11.34</td>
<td>14.8</td>
<td>18.5</td>
<td>21.0</td>
<td>23.3</td>
<td>26.2</td>
<td>28.3</td>
</tr>
<tr>
<td>13</td>
<td>3.57</td>
<td>4.11</td>
<td>5.01</td>
<td>5.89</td>
<td>7.04</td>
<td>9.30</td>
<td>12.34</td>
<td>16.0</td>
<td>19.8</td>
<td>22.4</td>
<td>24.7</td>
<td>27.7</td>
<td>29.8</td>
</tr>
<tr>
<td>14</td>
<td>4.07</td>
<td>4.66</td>
<td>5.63</td>
<td>6.57</td>
<td>7.79</td>
<td>10.2</td>
<td>13.34</td>
<td>17.1</td>
<td>21.1</td>
<td>23.7</td>
<td>26.7</td>
<td>29.7</td>
<td>31.3</td>
</tr>
<tr>
<td>15</td>
<td>4.60</td>
<td>5.23</td>
<td>6.26</td>
<td>7.26</td>
<td>8.55</td>
<td>11.0</td>
<td>14.34</td>
<td>18.2</td>
<td>22.3</td>
<td>25.0</td>
<td>27.5</td>
<td>30.6</td>
<td>32.8</td>
</tr>
<tr>
<td>16</td>
<td>5.14</td>
<td>5.81</td>
<td>6.91</td>
<td>7.96</td>
<td>9.31</td>
<td>11.9</td>
<td>15.34</td>
<td>19.4</td>
<td>23.5</td>
<td>26.3</td>
<td>28.8</td>
<td>32.0</td>
<td>34.3</td>
</tr>
<tr>
<td>17</td>
<td>5.70</td>
<td>6.41</td>
<td>7.56</td>
<td>8.67</td>
<td>10.1</td>
<td>12.8</td>
<td>16.34</td>
<td>20.5</td>
<td>24.8</td>
<td>27.6</td>
<td>30.2</td>
<td>33.4</td>
<td>35.7</td>
</tr>
<tr>
<td>18</td>
<td>6.26</td>
<td>7.01</td>
<td>8.23</td>
<td>9.39</td>
<td>10.9</td>
<td>13.7</td>
<td>17.34</td>
<td>21.6</td>
<td>26.0</td>
<td>28.9</td>
<td>31.5</td>
<td>34.8</td>
<td>37.2</td>
</tr>
<tr>
<td>19</td>
<td>6.84</td>
<td>7.63</td>
<td>8.91</td>
<td>10.1</td>
<td>11.7</td>
<td>14.6</td>
<td>18.34</td>
<td>22.7</td>
<td>27.2</td>
<td>30.1</td>
<td>32.9</td>
<td>36.2</td>
<td>38.6</td>
</tr>
<tr>
<td>20</td>
<td>7.43</td>
<td>8.26</td>
<td>9.59</td>
<td>10.9</td>
<td>12.4</td>
<td>15.5</td>
<td>19.34</td>
<td>23.8</td>
<td>28.4</td>
<td>31.4</td>
<td>34.2</td>
<td>37.6</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Figures from Johnson & Kuby, 2012.

Rowe, D.B.
Chapter 9: Inferences Involving One Population

Questions?

Homework: Chapter 9 # 7, 21, 23, 35, 37, 39, 47, 55, 67, 73, 75, 93, 95, 97, 103, 117, 119, 121, 129, 131, 135
Recap Chapter 10
10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

Confidence Interval Procedure

With σ_d unknown, a $1-\alpha$ confidence interval for $\mu_d=(\mu_1-\mu_2)$ is:

Confidence Interval for Mean Difference (Dependent Samples)

$$
\bar{d} - t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \quad \text{to} \quad \bar{d} + t(df, \alpha / 2) \frac{s_d}{\sqrt{n}}
$$

where $df=n-1$ \(10.2\)
10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

Example:

Construct a 95% CI for mean difference in Brand B – A tire wear.

\[\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i \]

\[df = \frac{\sum (d_i - \bar{d})^2}{\sqrt{n}} \]

\[s_d = 5.1 \quad \alpha = 0.05 \]

\[n = 6 \quad t(df, \alpha / 2) = 2.57 \]

\[\bar{d} = 6.3 \]

\[\bar{d} \pm t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \longrightarrow (0.090, 11.7) \]

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

Example: Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$

Step 2

\[
\begin{align*}
df &= 5 \\
t^* &= \frac{\bar{d} - \mu_{d0}}{s_d / \sqrt{n}}
\end{align*}
\]

$\alpha = .05$

Step 3

\[
\begin{align*}
\bar{d} &= 6.3 \\
s_d &= 5.1
\end{align*}
\]

$t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$

Step 4

$t(df, \alpha / 2) = 2.57$

Step 5 Since $t^* > t(df, \alpha / 2)$, reject H_0

Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations
10.3 Inference for Mean Difference Two Independent Samples
Confidence Interval Procedure

With σ_1 and σ_2 unknown, a $1-\alpha$ confidence interval for $\mu_1 - \mu_2$ is:

Confidence Interval for Mean Difference (Independent Samples)

$$\left(\bar{x}_1 - \bar{x}_2 \right) - t(df, \alpha / 2) \sqrt{\left(\frac{s^2_1}{n_1} \right) + \left(\frac{s^2_2}{n_2} \right)} \quad \text{to} \quad \left(\bar{x}_1 - \bar{x}_2 \right) + t(df, \alpha / 2) \sqrt{\left(\frac{s^2_1}{n_1} \right) + \left(\frac{s^2_2}{n_2} \right)}$$

where df is either calculated or smaller of df_1, or df_2 \hspace{1cm} (10.8)

Actually, this is for $\sigma_1 \neq \sigma_2$.

Next larger number than

$$df = \frac{\left(\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2} \right)^2}{\left(\frac{s^2_1 / n_1}{n_1 - 1} \right)^2 + \left(\frac{s^2_2 / n_2}{n_2 - 1} \right)^2}$$

If using a computer program.
If not using a computer program.
10: Inferences Involving Two Populations

10.3 Inference Mean Difference

Confidence Interval

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, σ_m & σ_f unknown.

\[
(\bar{x}_m - \bar{x}_f) \pm t(df, \alpha / 2) \sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}
\]

\[
(69.8 - 63.8) \pm 2.09 \sqrt{\left(\frac{(1.92)^2}{30}\right) + \left(\frac{(2.18)^2}{20}\right)}
\]

Therefore 4.75 to 7.25

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (f)</td>
<td>$n_1 = 20$</td>
<td>$\bar{x}_f = 63.8$</td>
<td>$s_f = 2.18$</td>
</tr>
<tr>
<td>Male (m)</td>
<td>$n_2 = 30$</td>
<td>$\bar{x}_m = 69.8$</td>
<td>$s_m = 1.92$</td>
</tr>
</tbody>
</table>

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations
10.3 Inference for Mean Difference Two Independent Samples

Hypothesis Testing Procedure

Step 1
\(H_0: \mu_f = \mu_m \) vs. \(H_a: \mu_f \neq \mu_m \)

Step 2
\[t^* = \frac{(\bar{x}_m - \bar{x}_f) - (\mu_m - \mu_f)}{\sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}} \]

\(df = 7 \)
\(\alpha = .05 \)

Step 3
\[t^* = \frac{(71.4 - 65.2) - (0)}{\sqrt{\left(\frac{7.4}{8}\right) + \left(\frac{8.2}{24}\right)}} = 5.5 \]

Step 4
\[t(df, \alpha / 2) = 2.36 \]

Step 5
Reject \(H_0 \) if \(5.5 > 2.36 \), height males \(\neq \) height females.
10: Inferences Involving Two Populations

10.4 Inference for Difference between Two Proportions

That is where 1. and 2. in the green box below come from

If independent samples of size n_1 and n_2 are drawn … with $p_1 = P_1(\text{success})$ and $p_2 = P_2(\text{success})$, then the sampling distribution of $p'_1 - p'_2$ has these properties:

1. mean $\mu_{p'_1 - p'_2} = p_1 - p_2$

2. standard error $\sigma_{p'_1 - p'_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large.

ie I $n_1, n_2 > 20$ II $n_1 p_1, n_1 q_1, n_2 p_2, n_2 q_2 > 5$ III sample <10% of pop
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions
Confidence Interval Procedure

Assumptions for ... difference between two proportions

\(p_1 - p_2 \): The \(n_1 \) ... and \(n_2 \) random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions \(p_1 - p_2 \)

\[
(p_1' - p_2') - z(\alpha / 2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}} \quad \text{to} \quad (p_1' - p_2') + z(\alpha / 2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}}
\]

where \(p_1' = \frac{x_1}{n_1} \) and \(p_2' = \frac{x_2}{n_2} \).

(10.11)
10: Inferences Involving Two Populations

10.4 Inference for Difference between Two Proportions

Confidence Interval Procedure

Example:
Construct a 99% CI for proportion of female A’s minus male A’s difference $p_f - p_m$.

40 values

$\begin{align*}
 n_m &= 9 \\
 n_f &= 31 \\
 x_m &= 2 \\
 x_f &= 11
\end{align*}$

$\begin{align*}
 p'_f &= \frac{x_f}{n_f} = \frac{11}{31} = .35 \\
 p'_m &= \frac{x_m}{n_m} = \frac{2}{9} = .22
\end{align*}$

$\begin{align*}
 z(\alpha / 2) &= 2.58 \\
 (p'_f - p'_m) &\pm z(\alpha / 2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}} \\
 (.35 - .22) &\pm 2.05 \sqrt{\frac{(.35)(.65)}{31} + \frac{(.22)(.78)}{9}} \\
 &\approx -.287 \text{ to } .553
\end{align*}$

Rowe, D.B.
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion

\[H_0: p_1 \geq p_2 \text{ vs. } H_a: p_1 < p_2 \]

\[H_0: p_1 \leq p_2 \text{ vs. } H_a: p_1 > p_2 \]

\[H_0: p_1 = p_2 \text{ vs. } H_a: p_1 \neq p_2 \]

Test Statistic for the Difference between two Proportions - Population Proportions Known

\[
z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]}}
\]

\[
p_1' = \frac{x_1}{n_1}, \quad p_2' = \frac{x_2}{n_2}
\]

when \(p_1 = p_2 = p \).
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

where we assume \(p_1 = p_2 \) and use pooled estimate of proportion \(\hat{p} \).

Test Statistic for the Difference between two Proportions \(\text{UnKnown} \)

\[
Z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}}}
\]

\[\hat{p}_p, \text{ estimated}\]

\[
p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \quad \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right] \quad p_p' = \frac{x_1 + x_2}{n_1 + n_2}
\]
10: Inferences Involving Two Populations

10.4 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

Step 1

\[H_0: p_s - p_c \leq 0 \text{ vs. } H_a: p_s - p_c > 0 \]

Step 2

\[z^* = \frac{(p'_s - p'_c) - (p_{0s} - p_{0c})}{\sqrt{p'_p q'_p \left(\frac{1}{n_s} + \frac{1}{n_c} \right)}} \]

\(\alpha = .05 \)

Step 3

\[z^* = \frac{(0.10 - 0.04) - (0)}{\sqrt{(0.07)(0.93) \left[\frac{1}{150} + \frac{1}{150} \right]}} = 2.04 \]

Step 4

\[z(\alpha) = 1.65 \]

\[.02 < p-value < .023 \text{ or } 2.04 > 1.65 \]

Step 5

Reject \(H_0 \)

Rowe, D.B.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

\[H_0: \sigma_1^2 \geq \sigma_2^2 \quad \text{vs.} \quad H_a: \sigma_1^2 < \sigma_2^2 \]

\[H_0: \sigma_1^2 \leq \sigma_2^2 \quad \text{vs.} \quad H_a: \sigma_1^2 > \sigma_2^2 \]

\[H_0: \sigma_1^2 = \sigma_2^2 \quad \text{vs.} \quad H_a: \sigma_1^2 \neq \sigma_2^2 \]

Assumptions: Independent samples from normal distribution

Test Statistic for Equality of Variances

\[F^* = \frac{S_n^2}{S_d^2} \quad \text{with} \quad df_n = n_n - 1 \quad \text{and} \quad df_d = n_d - 1. \]

(10.16)

Use new table to find areas for new statistic.
10: Inferences Involving Two Pops.
10.5 Inference Ratio of Two Variances

Example: Find $F(5, 8, 0.05)$.

$$df_n = n_n - 1 \quad df_d = n_d - 1$$

Table 9, Appendix B, Page 722.

<table>
<thead>
<tr>
<th>Degrees of Freedom for Denominator df_d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18.5</td>
<td>19.0</td>
<td>19.2</td>
<td>19.2</td>
<td>19.3</td>
<td>19.3</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>10.1</td>
<td>9.55</td>
<td>9.28</td>
<td>9.12</td>
<td>9.01</td>
<td>8.94</td>
<td>8.89</td>
<td>8.85</td>
<td>8.81</td>
<td>8.79</td>
</tr>
<tr>
<td>4</td>
<td>7.71</td>
<td>6.94</td>
<td>6.59</td>
<td>6.39</td>
<td>6.26</td>
<td>6.16</td>
<td>6.09</td>
<td>6.04</td>
<td>6.00</td>
<td>5.96</td>
</tr>
<tr>
<td>5</td>
<td>6.61</td>
<td>5.79</td>
<td>5.41</td>
<td>5.19</td>
<td>5.05</td>
<td>4.95</td>
<td>4.88</td>
<td>4.82</td>
<td>4.77</td>
<td>4.74</td>
</tr>
<tr>
<td>6</td>
<td>5.99</td>
<td>5.14</td>
<td>4.76</td>
<td>4.53</td>
<td>4.39</td>
<td>4.28</td>
<td>4.21</td>
<td>4.15</td>
<td>4.10</td>
<td>4.06</td>
</tr>
<tr>
<td>7</td>
<td>5.59</td>
<td>4.74</td>
<td>4.35</td>
<td>4.12</td>
<td>3.97</td>
<td>3.87</td>
<td>3.79</td>
<td>3.73</td>
<td>3.68</td>
<td>3.64</td>
</tr>
<tr>
<td>8</td>
<td>5.32</td>
<td>4.46</td>
<td>4.07</td>
<td>3.84</td>
<td>3.69</td>
<td>3.58</td>
<td>3.50</td>
<td>3.44</td>
<td>3.39</td>
<td>3.35</td>
</tr>
<tr>
<td>9</td>
<td>5.12</td>
<td>4.26</td>
<td>3.86</td>
<td>3.63</td>
<td>3.48</td>
<td>3.37</td>
<td>3.29</td>
<td>3.23</td>
<td>3.18</td>
<td>3.14</td>
</tr>
<tr>
<td>10</td>
<td>4.96</td>
<td>4.10</td>
<td>3.71</td>
<td>3.48</td>
<td>3.33</td>
<td>3.22</td>
<td>3.14</td>
<td>3.07</td>
<td>3.02</td>
<td>2.98</td>
</tr>
</tbody>
</table>

$\alpha = 0.05$

$F(5, 8, 0.05) = 3.69$

Figures from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

One tailed tests: Arrange H_0 & H_a so H_a is always “greater than”

$H_0: \sigma_1^2 \geq \sigma_2^2$ vs. $H_a: \sigma_1^2 < \sigma_2^2$ \quad \rightarrow \quad H_0: \frac{\sigma_2^2}{\sigma_1^2} \leq 1$ vs. $H_a: \frac{\sigma_2^2}{\sigma_1^2} > 1$ \quad \quad F* = \frac{s_2^2}{s_1^2}$

$H_0: \sigma_1^2 \leq \sigma_2^2$ vs. $H_a: \sigma_1^2 > \sigma_2^2$ \quad \quad H_0: \frac{\sigma_1^2}{\sigma_2^2} \leq 1$ vs. $H_a: \frac{\sigma_1^2}{\sigma_2^2} > 1$ \quad F* = \frac{s_1^2}{s_2^2}$

Reject H_0 if $F* = \frac{s_n^2}{s_d^2} > F(df_n, df_d, \alpha)$.

Two tailed tests: put larger sample variance s^2 in numerator

$H_0: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2$ \quad \rightarrow \quad H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$ vs. $H_a: \frac{\sigma_1^2}{\sigma_2^2} \neq 1$

$\frac{\sigma_n^2}{\sigma_d^2} = \frac{\sigma_1^2}{\sigma_2^2}$ if $s_1^2 > s_2^2$ \quad \quad \frac{\sigma_n^2}{\sigma_d^2} = \frac{\sigma_2^2}{\sigma_1^2}$ if $s_2^2 > s_1^2$

Reject H_0 if $F* = \frac{s_n^2}{s_d^2} > F(df_n, df_d, \alpha/2)$.
10: Inferences Involving Two Populations

10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

Step 1

\[H_0 : \sigma_m^2 \geq \sigma_f^2 \quad \text{vs.} \quad H_a : \sigma_m^2 < \sigma_f^2 \]

\[H_0 : \sigma_f^2 \leq \sigma_m^2 \quad \text{vs.} \quad H_a : \sigma_f^2 > \sigma_m^2 \]

\[H_0 : \sigma_f^2 / \sigma_m^2 \leq 1 \quad \text{vs.} \quad H_a : \sigma_f^2 / \sigma_m^2 > 1 \]

Step 2

\[F^* = \frac{s_f^2}{s_m^2} \quad \text{df}_f = 23 \]

\[F^* = \frac{s_f^2}{s_m^2} \quad \text{df}_f = 7 \]

Step 3

\[\alpha = .01 \]

\[F^* = \frac{8.2}{7.4} = 1.12 \]

Step 4

\[F(23, 7, .01) = 6.09 \]

Step 5

Fail to Reject \(H_0 \) \[1.12 < 6.09 \]
Chapter 10: Inferences Involving Two Populations

Questions?