Class 27

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 10.1-10.3

Lecture Chapter 10.4-10.5
Recap Chapter 10.1-10.3
10: Inferences Involving Two Populations
10.2 Inference for Mean Difference Two Dependent Samples

Confidence Interval Procedure

Paired Difference

\[d = x_1 - x_2 \]

(10.1)

\[
\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i
\]

\[
s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2
\]

\[
\mu_\bar{d} = \mu_d \quad \sigma_{\bar{d}} = \frac{\sigma_d}{\sqrt{n}}
\]

With \(\sigma_d \) unknown, a 1-\(\alpha \) confidence interval for \(\mu_d=(\mu_1-\mu_2) \) is:

Confidence Interval for Mean Difference (Dependent Samples)

\[
\bar{d} - t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \quad \text{to} \quad \bar{d} + t(df, \alpha / 2) \frac{s_d}{\sqrt{n}}
\]

where \(df=n-1 \)

(10.2)
10: Inferences Involving Two Populations
10.2 Inference for Mean Difference Two Dependent Samples

Example:
Construct a 95% CI for mean difference in Brand B – A tire wear.

\[d_i's: 8, 1, 9, -1, 12, 9 \]

\[n = 6 \quad df = 5 \quad t(df, \alpha / 2) = 2.57 \]

\[\bar{d} = 6.3 \quad \alpha = 0.05 \]

\[s_d = 5.1 \]

\[\bar{d} \pm t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \rightarrow (0.090, 11.7) \]

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

Example:
Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$

Step 2
\[
df = 5 \quad t^* = \frac{\bar{d} - \mu_{d0}}{s_d / \sqrt{n}}
\]
\[
\alpha = .05
\]

Step 3 $\bar{d} = 6.3 \quad t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$

Step 4 $t(df, \alpha / 2) = 2.57$

Step 5 Since $t^* > t(df, \alpha / 2)$, reject H_0

Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.
With σ_1 and σ_2 unknown, a $1-\alpha$ confidence interval for $\mu_1 - \mu_2$ is:

Confidence Interval for Mean Difference (Independent Samples)

$$(\bar{x}_1 - \bar{x}_2) - t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)} \quad \text{to} \quad (\bar{x}_1 - \bar{x}_2) + t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$$

where df is either calculated or smaller of df_1, or df_2 (10.8)

Actually, this is for $\sigma_1 \neq \sigma_2$.

Next larger number than

$$df = \left(\frac{s_1^2 + s_2^2}{n_1 + n_2}\right)^2 \left[\left(\frac{s_1^2 / n_1}{n_1 - 1}\right) + \left(\frac{s_2^2 / n_2}{n_2 - 1}\right)\right]$$

If using a computer program.

If not using a computer program.
10: Inferences Involving Two Populations

10.3 Inference Mean Difference

Confidence Interval

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, σ_m & σ_f unknown

$$
(\bar{x}_m - \bar{x}_f) \pm t(df, \alpha / 2) \sqrt{\frac{s_m^2}{n_m} + \frac{s_f^2}{n_f}}
$$

$$
(69.8 - 63.8) \pm 2.09 \sqrt{\frac{(1.92)^2}{30} + \frac{(2.18)^2}{20}} \quad \therefore 4.75 \text{ to } 7.25
$$

$\alpha = 0.05$
$t(19,.025) = 2.09$

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations

10.3 Inference for Mean Difference Two Independent Samples

Hypothesis Testing Procedure

Step 1

\(H_0: \mu_f = \mu_m \) vs. \(H_a: \mu_f \neq \mu_m \)

Step 2

\[t^* = \frac{\bar{x}_m - \bar{x}_f - (\mu_m - \mu_f)}{\sqrt{\left(\frac{s_m^2}{n_m} \right) + \left(\frac{s_f^2}{n_f} \right)}} \]

\(df = 7 \)

\(\alpha = 0.05 \)

Step 3

\[t^* = \frac{(71.4 - 65.2) - (0)}{\sqrt{\frac{7.4}{8} + \frac{8.2}{24}}} = 5.5 \]

Step 4

\[t(df, \alpha / 2) = 2.36 \]

Step 5

Reject \(H_0 \) if \(5.5 > 2.36 \), height males \(\neq \) height females

Rowe, D.B.
Chapter 10: Inferences Involving Two Populations

Questions?

Lecture Chapter 10.5-10.6
Chapter 10: Inference Involving Two Populations
(continued)

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

\[P(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

\[n = 1, 2, 3, ... \]
\[0 \leq p \leq 1 \]
\[x = 0, 1, ..., n \]

\[n = \text{number of trials or times we repeat the experiment.} \]
\[x = \text{the number of successes out of } n \text{ trials.} \]
\[p = \text{the probability of success on an individual trial.} \]
When we perform a binomial experiment we can estimate the probability of heads as

\[
p' = \frac{x}{n}
\]

where \(x \) is the number of successes in \(n \) trials.

This is a point estimate. Recall the rule for a CI is

point estimate \(\pm \) some amount
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

For Binomial, where \(x \) is number of successes out of \(n \) trials. We said that mean(\(cx \)) = \(cnp \) and variance(\(cx \)) = \(c^2 npq \).

\[\Rightarrow \text{mean}(x / n) = p \text{ and variance}(x / n) = pq / n. \]

We are often interested in comparisons between proportions \(p_1 - p_2 \). There is another rule that says that if \(x_1 \) and \(x_2 \) are random variables, then mean(\(x_1 \pm x_2 \)) = mean(\(x_1 \)) \pm mean(\(x_2 \))

further, \(\text{mean} \left(\frac{x_1 \pm x_2}{n_1} \right) = \text{mean} \left(\frac{x_1}{n_1} \right) \pm \text{mean} \left(\frac{x_2}{n_2} \right) \)

and variance \(\left(\frac{x_1 \pm x_2}{n_1} \right) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} \) if \(x_1 \) & \(x_2 \) independent.
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

That is where 1. and 2. in the green box below come from

If independent samples of size \(n_1 \) and \(n_2 \) are drawn ... with
\(p_1 = P_1 \) (success) and \(p_2 = P_2 \) (success), then the sampling
distribution of \(p'_1 - p'_2 \) has these properties:

1. mean \(\mu_{p'_1-p'_2} = p_1 - p_2 \)

2. standard error \(\sigma_{p'_1-p'_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}} \) (10.10)

3. approximately normal dist if \(n_1 \) and \(n_2 \) are sufficiently large.
 ie \(\text{I } n_1, n_2 > 20 \) \(\text{II } n_1 p_1, n_1 q_1, n_2 p_2, n_2 q_2 > 5 \) \(\text{III } \) sample<10% of pop
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

Confidence Interval Procedure

Assumptions for ... difference between two proportions

\(p_1 - p_2 \): The \(n_1 \) ... and \(n_2 \) random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions \(p_1 - p_2 \)

\[
(p_1' - p_2') - z(\alpha / 2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}} \quad \text{to} \quad (p_1' - p_2') + z(\alpha / 2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}}
\]

where \(p_1' = \frac{x_1}{n_1} \) and \(p_2' = \frac{x_2}{n_2} \).

(10.11)
Example:
Construct a 99% CI for proportion of female A’s minus male A’s difference $p_f - p_m$.

40 values

$n_m = 9$

$n_f = 31$

$x_m = 2$

$x_f = 11$

$p_f' = \frac{x_f}{n_f} = \frac{11}{31} = .35$

$p_m' = \frac{x_m}{n_m} = \frac{2}{9} = .22$

$z(\alpha / 2) = 2.58$

$\left(p_f' - p_m' \right) \pm z(\alpha / 2) \sqrt{\frac{p_f'q_f'}{n_f} + \frac{p_m'q_m'}{n_m}}$

$\left(.35 - .22 \right) \pm 2.05 \sqrt{\frac{(.35)(.65)}{31} + \frac{(.22)(.78)}{9}}$

$.287$ to $.553$
We can perform hypothesis tests on the proportion

\(H_0: p_1 \geq p_2 \) vs. \(H_a: p_1 < p_2 \)

\(H_0: p_1 \leq p_2 \) vs. \(H_a: p_1 > p_2 \)

\(H_0: p_1 = p_2 \) vs. \(H_a: p_1 \neq p_2 \)

\[
\frac{p_1 q_1 + p_2 q_2}{n_1 + n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]
\]

when \(p_1 = p_2 = p \).

Test Statistic for the Difference between two Proportions - Population Proportions Known

\[
z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]}}
\]

\[
p_1' = \frac{x_1}{n_1}, \quad p_2' = \frac{x_2}{n_2}
\]

(10.12)
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions

Population Proportions UnKnown

\[z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{p_p'q_p'\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} \]

where we assume \(p_1 = p_2 \) and use pooled estimate of proportion

\[p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \quad \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2} = pq\left[\frac{1}{n_1} + \frac{1}{n_2}\right] \quad p_p' = \frac{x_1 + x_2}{n_1 + n_2} \]
10: Inferences Involving Two Populations
10.4 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

Step 1
$H_0: p_s - p_c \leq 0$ vs. $H_a: p_s - p_c > 0$

Step 2
$$z^* = \frac{(p_s' - p_c') - (p_{0s} - p_{0c})}{\sqrt{p_p'q_p'\left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$$

Step 3
$$z^* = \frac{(0.10 - 0.04) - (0)}{\sqrt{(0.07)(0.93)\left[\frac{1}{150} + \frac{1}{150}\right]}} = 2.04$$

Step 4
$z(\alpha) = 1.65$

Step 5
Reject H_0 if $z^* > 1.65$

Rowe, D.B.

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

\[H_0 : \sigma_1^2 \geq \sigma_2^2 \quad \text{vs.} \quad H_a : \sigma_1^2 < \sigma_2^2 \]
\[H_0 : \sigma_1^2 \leq \sigma_2^2 \quad \text{vs.} \quad H_a : \sigma_1^2 > \sigma_2^2 \]
\[H_0 : \sigma_1^2 = \sigma_2^2 \quad \text{vs.} \quad H_a : \sigma_1^2 \neq \sigma_2^2 \]

Assumptions: Independent samples from normal distribution

Test Statistic for Equality of Variances

\[F^* = \frac{S_n^2}{S_d^2} \]

with \(df_n = n_n - 1 \) and \(df_d = n_d - 1 \).

\[(10.16) \]

Use new table to find areas for new statistic.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Properties of F distribution
1. F is non-negative
2. F is nonsymmetrical
3. F is a family of dists.

$$df_n = \nu_n = n_n - 1, df_d = \nu_d = n_d - 1.$$

$$\mu = \frac{\nu_d}{\nu_d - 2}, \quad \nu_d > 2$$

$$\sigma^2 = \frac{2\nu_d^2(\nu_n + \nu_d - 2)}{\nu_n(\nu_d - 2)^2(\nu_d - 4)}, \quad \nu_d > 4$$

$$f (F \mid \nu_n, \nu_d) = \frac{\Gamma \left(\frac{\nu_n + \nu_d}{2} \right) \left(\frac{\nu_n}{\nu_d} \right)^{\nu_n/2}}{\Gamma \left(\frac{\nu_n}{2} \right) \Gamma \left(\frac{\nu_d}{2} \right)} \left(1 + \frac{\nu_n}{\nu_d} F \right)^{-(\nu_n + \nu_d)/2}$$

Rowe, D.B.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

Will also need critical values.

\[P \left(F > F(df_n, df_d, \alpha) \right) = \alpha \]

Test Statistic for Equality of Variances

\[F^* = \frac{S_n^2}{S_d^2} \quad \text{with } df_n = n_n - 1 \quad \text{and } df_d = n_d - 1. \]

(10.16)

Table 9
Appendix B
Page 722

Figure from Johnson & Kuby, 2012.
10: Inferences Involving Two Pops.
10.5 Inference Ratio of Two Variances

Example: Find $F(5,8,0.05)$.

$$df_n = n_n - 1 \quad \text{and} \quad df_d = n_d - 1$$

Table 9, Appendix B, Page 722.

$\alpha = 0.05$

<table>
<thead>
<tr>
<th>Degrees of Freedom for Denominator df_d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>161.0</td>
<td>200.0</td>
<td>216.0</td>
<td>225.0</td>
<td>230.0</td>
<td>234.0</td>
<td>237.0</td>
<td>239.0</td>
<td>241.0</td>
<td>242.0</td>
</tr>
<tr>
<td>2</td>
<td>18.5</td>
<td>19.0</td>
<td>19.2</td>
<td>19.2</td>
<td>19.3</td>
<td>19.3</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>10.1</td>
<td>9.55</td>
<td>9.28</td>
<td>9.12</td>
<td>9.01</td>
<td>8.94</td>
<td>8.89</td>
<td>8.85</td>
<td>8.81</td>
<td>8.79</td>
</tr>
<tr>
<td>4</td>
<td>7.71</td>
<td>6.94</td>
<td>6.59</td>
<td>6.39</td>
<td>6.26</td>
<td>6.16</td>
<td>6.09</td>
<td>6.04</td>
<td>6.00</td>
<td>5.96</td>
</tr>
<tr>
<td>5</td>
<td>6.61</td>
<td>5.79</td>
<td>5.41</td>
<td>5.19</td>
<td>5.05</td>
<td>4.95</td>
<td>4.88</td>
<td>4.82</td>
<td>4.77</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Figures from Johnson & Kuby, 2012.
10: Inferences Involving Two Populations
10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

One tailed tests: Arrange H_0 & H_a so H_a is always “greater than”

$H_0 : \sigma_1^2 \geq \sigma_2^2$ vs. $H_a : \sigma_1^2 < \sigma_2^2$ $\rightarrow H_0 : \sigma_2^2 / \sigma_1^2 \leq 1$ vs. $H_a : \sigma_2^2 / \sigma_1^2 > 1 \quad F^* = \frac{s_2^2}{s_1^2}$

$H_0 : \sigma_1^2 \leq \sigma_2^2$ vs. $H_a : \sigma_1^2 > \sigma_2^2$ \hspace{1cm} $H_0 : \sigma_1^2 / \sigma_2^2 \leq 1$ vs. $H_a : \sigma_1^2 / \sigma_2^2 > 1 \quad F^* = \frac{s_1^2}{s_2^2}$

Reject H_0 if $F^* = \frac{s_n^2}{s_d^2} > F(df_n, df_d, \alpha)$.

Two tailed tests: put larger sample variance s^2 in numerator

$H_0 : \sigma_1^2 = \sigma_2^2$ vs. $H_a : \sigma_1^2 \neq \sigma_2^2$ $\rightarrow H_0 : \sigma_n^2 / \sigma_d^2 = 1$ vs. $H_a : \sigma_n^2 / \sigma_d^2 \neq 1$

$\sigma_n^2 = \sigma_1^2$ if $s_1^2 > s_2^2$, $\sigma_n^2 = \sigma_2^2$ if $s_2^2 > s_1^2$

Reject H_0 if $F^* = \frac{s_n^2}{s_d^2} > F(df_n, df_d, \alpha/2)$.

Rowe, D.B.
10: Inferences Involving Two Populations

10.5 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

Step 1

\[H_0 : \sigma_m^2 \geq \sigma_f^2 \quad \text{vs.} \quad H_a : \sigma_m^2 < \sigma_f^2 \]

\[H_0 : \sigma_m^2 \leq \sigma_f^2 \quad \text{vs.} \quad H_a : \sigma_m^2 > \sigma_f^2 \]

\[H_0 : \sigma_m^2 / \sigma_f^2 \leq 1 \quad \text{vs.} \quad H_a : \sigma_m^2 / \sigma_f^2 > 1 \]

Step 2

\[F^* = \frac{s_m^2}{s_f^2} \quad \text{df}_n = 7 \]

\[\text{df}_f = 23 \]

\[\alpha = .01 \]

Step 3

\[F^* = 7.4 / 8.2 = 0.90 \]

Step 4

\[F(7, 23, .01) = 3.54 \]

Step 5 Fail to Reject \(H_0 \) 0.90 < 3.54
Chapter 10: Inferences Involving Two Populations

Questions?