Class 7

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 4.1, 4.2

Lecture Chapter 4.3 - 4.5

Go over Exam 1.
Recap Chapter 4.1, 4.2
4: Probability
4.1 Probability of Events

An **experiment** is a process by which a measurement is taken or observations is made. i.e. *flip coin* or *roll die*

An **outcome** is the result of an experiment. i.e. *Heads*, or 3

Sample space is a listing of possible outcomes. i.e. $S=\{H,T\}$

An **event** is an outcome or a combination of outcomes. i.e. $A=$even number when rolling a die=$\{2,4,6\}$
4: Probability

4.1 Probability of Events

Property 1: $0 \leq P(A_i) \leq 1$

Property 2: $\sum_{i=1}^{n} P(O_i) = 1$

Approaches to probability.

(1) Empirical (AKA experimental)

empirical probability of $A = \frac{\text{number of times } A \text{ occurred}}{\text{number of trials}}$

(2) Theoretical (AKA classical or equally likely)

theoretical probability of $A = \frac{\text{number of times } A \text{ occurs in sample space}}{\text{number of elements in the sample space}}$
4: Probability - Empirical
4.1 Probability of Events – Law of large numbers

Had computer flip a single coin 1000 times.

Flip # on x axis

$P'(H)$ on y axis.

This shows convergence to true value of 1/2.

$$P'(H) = \frac{\text{# of heads}}{\text{# coin flips}}$$

Rowe, D.B.
4: Probability - Theoretical

4.1 Probability of Events

So let's flip a coin twice.

Can flip three times.

Sample space: listing of outcomes for 2 flips

\[S = \{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \} \]

\[P(HHH) = \frac{\text{# times } HHH \text{ occurs in } S}{\text{# elements in } S} \]
4: Probability
4.2 Conditional Probability

Example: Draw card from deck. Let $A = \text{red card}$, $B = \text{heart}$.

$P(A) = ?$ vs. $P(A|B) = ?$

$P(A) = \frac{1}{2}$ vs. $P(A|B) = 1$

Figure from Johnson & Kuby, 2012.
Chapter 4: Probability continued

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
4: Probability
4.3 Rules of Probability - Probability of “Not A”

Complimentary Events: The *compliment of A, \bar{A}* is the set of all sample points in the sample space that does not belong to event A. i.e. If A, is heads, then \bar{A} is tails.

Compliment Rule:
In words: probability of A compliment $= \text{one} - \text{probability of } A$

In algebra: $P(\bar{A}) = 1 - P(A)$

From $P(A) + P(\bar{A}) = 1 \quad (4.3)$

i.e. $P(T) = 1 - P(H)$
4: Probability
4.3 Rules of Probability - Probability of “Not A”

Compliment: $S = \{A, \bar{A}\}$

Venn Diagram:

$P(\bar{A}) = 1 - P(A)$
4: Probability
4.3 Rules of Probability - Probability of “A or B”

General Addition Rule
Let A and B be two events defined in the sample space, S.

In words: probability of A or B = probability of A
+ probability of B
- probability of A and B

In algebra: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ (4.4)
4: Probability

4.3 Rules of Probability - Probability of “A or B”

Union: A or B

Venn Diagram:

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)
\]

Double count so have to subtract one off.
4: Probability

4.3 Rules of Probability – “A or B”

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

Example: Pick Card, \(A = \text{Heart} \), \(B = \text{Ace} \)

\[P(\text{Heart or Ace}) \]

\[P(\text{Heart}) = \frac{13}{52} \]

\[P(\text{Ace}) = \frac{4}{52} \]

\[P(\text{Heart and Ace}) = \frac{1}{52} \]

\[P(\text{Heart or Ace}) = P(\text{Heart}) + P(\text{Ace}) - P(\text{Heart and Ace}) \]

\[P(\text{Heart or Ace}) = \frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} \]

Figure from Johnson & Kuby, 2012.
4: Probability
4.3 Rules of Probability - Probability of “A and B”

General Multiplication Rule
Let A and B be two events defined in the sample space, S.

In words: probability of A and $B = \text{probability of } A \times \text{probability of } B$, knowing A

In algebra: $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$

(4.5)
4: Probability

4.3 Rules of Probability - Probability of “A and B”

Event Intersection: A and B

Venn Diagram:

$$P(A \text{ and } B) = P(A) \cdot P(B \mid A)$$

S
4: Probability

4.3 Rules of Probability – “A and B”

\[P(A \text{ and } B) = P(B)P(A \mid B) \]

Example: Pick Card, \(A = \text{Heart} \), \(B = \text{Ace} \)

\[P(\text{Heart and Ace}) \]

\[P(\text{Ace}) = \frac{4}{52} \]

\[P(\text{Heart} \mid \text{Ace}) = \frac{1}{4} \]

\[P(\text{Heart and Ace}) = P(\text{Ace})P(\text{Heart} \mid \text{Ace}) \]

\[P(\text{Heart and Ace}) = \left(\frac{4}{52} \right) \left(\frac{1}{4} \right) = \frac{1}{52} \]

Figure from Johnson & Kuby, 2012.
Conditional Probability: Probability of event A given that event B has occurred is

$$P(A | B) = \frac{P(A \text{ and } B)}{P(B)}$$

the “$|$” is spoken as “given” or “knowing”
4: Probability
4.3 Rules of Probability – “A and B”

\[P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} \]

Example: Pick Card, \(A = \text{Heart}, \ B = \text{Ace} \)

\[P(\text{Heart} \mid \text{Ace}) \]

\[P(\text{Heart and Ace}) = \frac{1}{52} \]

\[P(\text{Ace}) = \frac{4}{52} \]

\[P(\text{Heart} \mid \text{Ace}) = \frac{P(\text{Heart and Ace})}{P(\text{Ace})} = \frac{1/52}{4/52} = \frac{1}{4} \]

Rowe, D.B.
4: Probability

4.3 Rules of Probability

Union Example \((A \text{ or } B)\): Rolling a single die.
\(A=\text{event } #1,2,3.\ B=\text{event odd number.}\)
4: Probability
4.3 Rules of Probability

Union Example \((A \text{ or } B)\): Rolling a single die.
\(A=\text{event #1,2,3.} \quad B=\text{event odd number.}\)
\(A=\{1,2,3\}\)
4: Probability
4.3 Rules of Probability

Union Example (A or B): Rolling a single die.
A=event #1,2,3. B=event odd number.
$B=$\{1,3,5\}

\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\hline
\hline
\hline
\hline
S
\end{array}
4: Probability
4.3 Rules of Probability

Union Example \((A \text{ or } B)\): Rolling a single die.
\(A=\text{event #1,2,3. } B=\text{event odd number.}\)
\((A \text{ or } B)\)

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)
\]
4: Probability
4.3 Rules of Probability

Intersection Example (*A* and *B*): Rolling a single die.
A=event #1,2,3. *B*=event odd number.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[S \]
4: Probability
4.3 Rules of Probability

Intersection Example \((A \text{ and } B)\): Rolling a single die.

\(A\)=event #1,2,3. \(B\)=event odd number.

\(A=\{1,2,3\}\)
4: Probability
4.3 Rules of Probability

Intersection Example \((A \text{ and } B)\): Rolling a single die.

\(A\) = event #1,2,3. \(B\) = event odd number.

\(B\) = \{1,3,5\}

\[S \]

\begin{tabular}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{tabular}
4: Probability
4.3 Rules of Probability

Intersection Example (A and B): Rolling a single die.

A=event #1,2,3. B=event odd number.

$(A \text{ and } B) = \{1,3\}$

$$P(A \text{ and } B) = P(A) \cdot P(B \mid A)$$

Rowe, D.B.
4: Probability
4.4 Mutually Exclusive Events

Mutually exclusive events:
Events that share no common elements

In algebra: \(P(A \text{ and } B) = 0 \)

In words:
1. If one event has occurred, the other cannot.
2. None of the elements in one is in other.
3. In Venn diagrams, no intersection.
4. Intersection of events has a probability of zero.
4: Probability
4.4 Mutually Exclusive Events

Mutually Exclusive: \(P(A \text{ and } B) = 0 \)

Venn Diagram:
4: Probability
4.4 Mutually Exclusive Events

Mutually Exclusive Example: Rolling a single die.
$A =$ event #1,2. $B =$ event #5,6.

$A \cap B = \emptyset$

$P(A \text{ and } B) = 0$
4: Probability
4.5 Independent Events

Independent events: Two events are independent if the occurrence or nonoccurrence of one gives us no information about the likeliness of occurrence for the other.

In algebra: \[P(A) = P(A \mid B) = P(A \mid \text{not } B) \]

In words:
1. Prob of \(A \) unaffected by knowledge that \(B \) has occurred, not occurred, or no knowledge.
2. …
3. …
4: Probability
4.5 Independent Events

Two events A and B are independent if the probability of one is not “influenced” by the occurrence or nonoccurrence of the other.

Two Events A and B are independent if:

1. $P(A) = P(A \mid B)$
2. $P(B) = P(B \mid A)$
3. $P(A \text{ and } B) = P(A) \cdot P(B)$

Examples:
Dependent events: Events that are not independent. That is, occurrence of one event does have an effect on the probability of occurrence of the other event.

In algebra: $P(A) \neq P(A \mid B)$
4: Probability
4.5 Independent Events - Special multiplication rule

Special multiplication rule:
Let A and B be two independent events defined in a sample space S.

In words: The probability of A and $B = \text{probability of } A \times \text{probability of } B$

In algebra: $P(A \text{ and } B) = P(A) \cdot P(B)$

More generally

$P(A \text{ and } B \text{ and } C \text{ and } D \text{ and } E) = P(A) \cdot P(B) \cdot P(C) \cdot P(D) \cdot P(E)$ (4.7)
4: Probability

4.6 Are Mutually Exclusive and Independence Related?

Read this section on your own.
4: Probability

Questions?

Homework: Chapter 4 # 59, 63, 65, 69, 85, 89, 91, 97, 105, 107, 113

Read Chapter 5.1-5.2