Class 26

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 10.3 and 10.4

Lecture Chapter 10.5-10.6
Recap Chapter 10.3-10.4
10: Inferences Involving Two Populations
10.3 Inference for Mean Difference Two Dependent Samples

Confidence Interval Procedure

With \(\sigma_d \) unknown, a \(1-\alpha \) confidence interval for \(\mu_d \) is:

\[
\bar{d} - t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \quad \text{to} \quad \bar{d} + t(df, \alpha / 2) \frac{s_d}{\sqrt{n}}
\]

where \(df = n - 1 \)
10: Inferences Involving Two Populations
10.3 Inference for Mean Difference Two Dependent Samples

Example:
Construct a 95% CI for mean difference in B – A tire wear.

<table>
<thead>
<tr>
<th>Car</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand A</td>
<td>125</td>
<td>64</td>
<td>94</td>
<td>38</td>
<td>90</td>
<td>106</td>
</tr>
<tr>
<td>Brand B</td>
<td>133</td>
<td>65</td>
<td>103</td>
<td>37</td>
<td>102</td>
<td>115</td>
</tr>
</tbody>
</table>

8, 1, 9, -1, 12, 9

\(n = 6 \)

\(df = 5 \)

\(t(df, \alpha / 2) = 2.57 \)

\(\bar{d} = 6.3 \)

\(\alpha = 0.05 \)

\(s_d = 5.1 \)

\(\bar{d} \pm t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \rightarrow (0.090, 11.7) \)

Figure from Johnson & Kuby, 2008.
10: Inferences Involving Two Populations

10.3 Inference for Mean Difference Two Dependent Samples

Example:

Test mean difference of Brand B minus Brand A is zero.

<table>
<thead>
<tr>
<th>Car</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand A</td>
<td>125</td>
<td>64</td>
<td>94</td>
<td>38</td>
<td>90</td>
<td>106</td>
</tr>
<tr>
<td>Brand B</td>
<td>133</td>
<td>65</td>
<td>103</td>
<td>37</td>
<td>102</td>
<td>115</td>
</tr>
</tbody>
</table>

Step 1 \(H_0: \mu_d = 0 \) vs. \(H_a: \mu_d \neq 0 \)

Step 2 \(df = 5 \) \(\alpha = .05 \)

Step 3 \(\bar{d} = 6.3 \)
\(s_d = 5.1 \)

Step 4 \(t = \frac{\bar{d} - \mu_{d0}}{s_d / \sqrt{n}} \)

Step 5 Since \(t^* > t(df, \alpha / 2) \), reject \(H_0 \)

\[t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03 \]

\[t(df, \alpha / 2) = 2.57 \]

Figures from Johnson & Kuby, 2008.
10: Inferences Involving Two Populations
10.4 Inference for Mean Difference Two Independent Samples

Confidence Interval Procedure

With \(\sigma_1 \) and \(\sigma_2 \) unknown, a \(1-\alpha \) confidence interval for \(\mu_1 - \mu_2 \) is:

\[
(\bar{x}_1 - \bar{x}_2) - t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)} \quad \text{to} \quad (\bar{x}_1 - \bar{x}_2) + t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}
\]

where \(df \) is either calculated or smaller of \(df_1 \), or \(df_2 \) (10.8)

Actually, this is for \(\sigma_1 \neq \sigma_2 \).

Next larger number than

\[
df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 \left/ \left(\frac{s_1^2}{n_1-1} + \frac{s_2^2}{n_2-1}\right)^2\right.
\]

If using a computer program.

If not using a computer program.
10: Inferences Involving Two Populations
10.4 Inference Mean Difference
Confidence Interval

Example:
Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, σ_m & σ_f unknown

$$\left(\bar{x}_m - \bar{x}_f \right) \pm t(df, \alpha / 2) \sqrt{\left(\frac{s_m^2}{n_m} \right) + \left(\frac{s_f^2}{n_f} \right)}$$

$$\alpha = 0.05 \quad t(19,.025) = 2.09$$

$$\left(69.8 - 63.8 \right) \pm 2.09 \sqrt{\left(\frac{(1.92)^2}{30} \right) + \left(\frac{(2.18)^2}{20} \right)}$$

therefore 4.75 to 7.25

Figure from Johnson & Kuby, 2008.
10: Inferences Involving Two Populations

10.4 Inference for Mean Difference Two Independent Samples

Hypothesis Testing Procedure

Step 1

\(H_0: \mu_f = \mu_m \) vs. \(H_a: \mu_f \neq \mu_m \)

Step 2

\[t^* = \frac{(\bar{x}_m - \bar{x}_f) - (\mu_m - \mu_f)}{\sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}} \]

\(df = 36 \)

\(\alpha = .05 \)

Step 3

\[t^* = \frac{(70.5 - 65.2) - (0)}{\sqrt{\left(\frac{8.1}{37}\right) + \left(\frac{6.6}{71}\right)}} = 9.47 \]

Step 4

\[t(df, \alpha / 2) = 2.03 \]

Step 5

Reject \(H_0 \) if \(t^* > t(df, \alpha / 2) \)

\(t^* \) is calculated with the given data points:

- \(\bar{x}_m = 70.5 \)
- \(\bar{x}_f = 65.2 \)
- \(s_m = 8.1 \)
- \(s_f = 6.6 \)
- \(n_m = 37 \)
- \(n_f = 71 \)

Rowe, D.B.
Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Chapter 10 # 5, 7, 9, 11,
13, 17, 23, 25, 31, 35
49, 57, 65, 71
81, 83, 87, 91, 93, 99
109, 111, 113, 115, 119
Lecture Chapter 10.5-10.6
Chapter 10: Inference Involving Two Populations (continued)

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

\[P(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

- \(n = 1, 2, 3, \ldots \)
- \(0 \leq p \leq 1 \)
- \(x = 0, 1, \ldots, n \)

\(n \) = number of trials or times we repeat the experiment.
\(x \) = the number of successes out of \(n \) trials.
\(p \) = the probability of success on an individual trial.
When we perform a binomial experiment we can estimate the probability of heads as

\[p' = \frac{x}{n} \]

where \(x \) is the number of successes in \(n \) trials.

This is a point estimate. Recall the rule for a CI is

point estimate ± some amount
For Binomial, where \(x \) is number of successes out of \(n \) trials.

We said that \(\text{mean}(cx) = cnp \) and \(\text{variance}(cx) = c^2npq \).

\[\rightarrow \text{mean}(x/ n) = p \quad \text{and} \quad \text{variance}(x/ n) = pq / n. \]

We are often interested in comparisons between proportions \(p_1 - p_2 \). There is another rule that says that if \(x_1 \) and \(x_2 \) are random variables, then \(\text{mean}(x_1 \pm x_2) = \text{mean}(x_1) \pm \text{mean}(x_2) \)

\[
\text{further, } \text{mean}\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \text{mean}\left(\frac{x_1}{n_1}\right) \pm \text{mean}\left(\frac{x_2}{n_2}\right)
\]

\[
\text{and variance}\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}.
\]

if \(x_1 \) & \(x_2 \) independent

Rowe, D.B.
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

That is where 1. and 2. in the orange box below come from

If independent samples of size n_1 and n_2 are drawn ... with $p_1=P_1(\text{success})$ and $p_2=P_2(\text{success})$, then the sampling distribution of $p_1' - p_2'$ has these properties:

1. mean $\mu_{p_1'-p_2'} = p_1 - p_2$

2. standard error $\sigma_{p_1'-p_2'} = \sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie I $n_1, n_2>20$ II $n_1p_1, n_1q_1, n_2p_2, n_2q_2>5$ III sample<10% of pop
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

Confidence Interval Procedure

Assumptions for the difference between two proportions

\(p_1 - p_2 \): The \(n_1 \) and \(n_2 \) random observations are selected independently from two populations that are not changing.

Confidence Interval for the Difference between Two Proportions \(p_1 - p_2 \)

\[
(p_1' - p_2') - z(\alpha / 2) \sqrt{\frac{p_1' q_1'}{n_1} + \frac{p_2' q_2'}{n_2}} \quad \text{to} \quad (p_1' - p_2') + z(\alpha / 2) \sqrt{\frac{p_1' q_1'}{n_1} + \frac{p_2' q_2'}{n_2}}
\]

where \(p_1' = \frac{x_1}{n_1} \) and \(p_2' = \frac{x_2}{n_2} \).

(10.11)
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

Confidence Interval Procedure

Example:
Construct a 99% CI for proportion of female A’s minus male A’s difference $p_f - p_m$.

128 values

$n_m = 43$
$n_f = 85$
$x_m = 18$
$x_f = 52$

$p'_f = \frac{x_f}{n_f} = \frac{52}{85} = .61$
$p'_m = \frac{x_m}{n_m} = \frac{18}{43} = .42$

$z(\alpha / 2) = 2.05$

$(p'_f - p'_m) \pm z(\alpha / 2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$

$(.61 - .42) \pm 2.05 \sqrt{\frac{(.61)(.39)}{85} + \frac{(.42)(.58)}{43}}$

.001 to .379
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion

\(H_0: p_1 \geq p_2 \) vs. \(H_a: p_1 < p_2 \)

\(H_0: p_1 \leq p_2 \) vs. \(H_a: p_1 > p_2 \)

\(H_0: p_1 = p_2 \) vs. \(H_a: p_1 \neq p_2 \)

When \(p_1 = p_2 = p \).

Test Statistic for the Difference between two Proportions - Population Proportions Known

\[
Z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]}}
\]

\[
p_1' = \frac{x_1}{n_1}, \quad p_2' = \frac{x_2}{n_2}
\]

(10.12)
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

where we assume \(p_1 = p_2 \) and use pooled estimate of proportion

\[
p'_p = \frac{x_1 + x_2}{n_1 + n_2}
\]

\[
p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2}
\]

\[
p_1 q_1 + p_2 q_2 = p q \left[\frac{1}{n_1} + \frac{1}{n_2} \right]
\]

\[
z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{p'_p q'_p \left[\frac{1}{n_1} + \frac{1}{n_2} \right]}}
\]

\[
\text{Test Statistic for the Difference between two Proportions} \quad \text{Unknown}
\]

Rowe, D.B.
10: Inferences Involving Two Populations
10.5 Inference for Difference between Two Proportions

Hypothesis Testing Procedure

Step 1

\[H_0: p_s - p_c \leq 0 \text{ vs. } H_a: p_s - p_c > 0 \]

Step 2

\[z^* = \frac{(p_s' - p_c') - (p_{0s} - p_{0c})}{\sqrt{p_p'q_p' \left(\frac{1}{n_s} + \frac{1}{n_c} \right)}} \]

\[z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150} \right]}} = 2.04 \]

Step 4

\[z(\alpha) = 1.65 \]

Step 5

Reject \(H_0 \) if \(z^* > 1.65 \)

\[.02 < p-value < .023 \text{ or } 2.04 > 1.65 \]

Cellular Phone Sample Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Number Defective</th>
<th>Number Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salesperson's</td>
<td>(x_s = 15)</td>
<td>(n_s = 150)</td>
</tr>
<tr>
<td>Competitor's</td>
<td>(x_c = 6)</td>
<td>(n_c = 150)</td>
</tr>
</tbody>
</table>

\[p'_s = \frac{x_s}{n_s} = \frac{15}{150} \]
\[p'_c = \frac{x_c}{n_c} = \frac{6}{150} \]
\[p'_p = \frac{x_s + x_c}{n_s + n_c} = \frac{15 + 6}{150 + 150} \]

\(\alpha = .05 \)

Figure from Johnson & Kuby, 2008.
We can perform hypothesis tests on two variances

\[H_0 : \sigma_1^2 \geq \sigma_2^2 \ vs. \ H_a : \sigma_1^2 < \sigma_2^2 \]
\[H_0 : \sigma_1^2 \leq \sigma_2^2 \ vs. \ H_a : \sigma_1^2 > \sigma_2^2 \]
\[H_0 : \sigma_1^2 = \sigma_2^2 \ vs. \ H_a : \sigma_1^2 \neq \sigma_2^2 \]

Assumptions: Independent samples from normal distribution

Test Statistic for Equality of Variances

\[F^* = \frac{s_n^2}{s_d^2} \]

with \(df_n = n_n - 1 \) and \(df_d = n_d - 1 \).

(10.16)

Use new table to find areas for new statistic.
10: Inferences Involving Two Populations

10.6 Inference for Ratio of Two Variances Two Ind. Samples

Properties of F distribution

1. F is non-negative
2. F is nonsymmetrical
3. F is a family of dists.

$\text{df}_n = \nu_n = n_n - 1, \text{df}_d = \nu_d = n_d - 1.$

$$
\mu = \frac{\nu_d}{\nu_d - 2}, \quad \nu_d > 2
$$

$$
\sigma^2 = \frac{2\nu_d^2(\nu_n + \nu_d - 2)}{\nu_n(\nu_d - 2)^2(\nu_d - 4)}, \quad \nu_2 > 4
$$

$$
f(F | \nu_n, \nu_d) = \frac{\Gamma\left(\frac{\nu_n + \nu_d}{2}\right)\left(\frac{\nu_n}{\nu_d}\right)^{\nu_n/2}}{\Gamma\left(\frac{\nu_n}{2}\right)\Gamma\left(\frac{\nu_d}{2}\right)} \frac{F^{\nu_n/2-1}}{(1 + \frac{\nu_n}{\nu_d} F)^{(\nu_n + \nu_d)/2}}
$$

Rowe, D.B.
10: Inferences Involving Two Populations
10.6 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

Test Statistic for Equality of Variances

\[F^* = \frac{S_n^2}{S_d^2} \quad \text{with } df_n = n_n - 1 \quad \text{and } df_d = n_d - 1 \]

(10.16)

Will also need critical values.

\[P(F > F(df_n, df_d, \alpha)) = \alpha \]

Table 9
Appendix B
Page 668

Figure from Johnson & Kuby, 2008.
10: Inferences Involving Two Pops.

10.6 Inference Ratio of Two Variances

Example: Find $F(5,8,0.05)$.

$df_n = n_n - 1$
$df_d = n_d - 1$

Table 9, Appendix B, Page 668.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>df_d</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.5</td>
<td>19.0</td>
<td>19.2</td>
<td>19.2</td>
<td>19.3</td>
<td>19.3</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>10.1</td>
<td>9.55</td>
<td>9.28</td>
<td>9.12</td>
<td>9.01</td>
<td>8.94</td>
<td>8.89</td>
<td>8.85</td>
<td>8.81</td>
<td>8.79</td>
</tr>
<tr>
<td>4</td>
<td>7.71</td>
<td>6.94</td>
<td>6.59</td>
<td>6.39</td>
<td>6.26</td>
<td>6.16</td>
<td>6.09</td>
<td>6.04</td>
<td>6.00</td>
<td>5.96</td>
</tr>
<tr>
<td>5</td>
<td>6.61</td>
<td>5.79</td>
<td>5.41</td>
<td>5.19</td>
<td>5.05</td>
<td>4.95</td>
<td>4.88</td>
<td>4.82</td>
<td>4.77</td>
<td>4.74</td>
</tr>
<tr>
<td>6</td>
<td>5.99</td>
<td>5.14</td>
<td>4.76</td>
<td>4.53</td>
<td>4.39</td>
<td>4.28</td>
<td>4.21</td>
<td>4.15</td>
<td>4.10</td>
<td>4.06</td>
</tr>
<tr>
<td>7</td>
<td>5.59</td>
<td>4.74</td>
<td>4.35</td>
<td>4.12</td>
<td>3.97</td>
<td>3.87</td>
<td>3.79</td>
<td>3.73</td>
<td>3.68</td>
<td>3.64</td>
</tr>
<tr>
<td>8</td>
<td>5.32</td>
<td>4.46</td>
<td>4.07</td>
<td>3.84</td>
<td>3.69</td>
<td>3.58</td>
<td>3.50</td>
<td>3.44</td>
<td>3.39</td>
<td>3.35</td>
</tr>
<tr>
<td>9</td>
<td>5.12</td>
<td>4.26</td>
<td>3.86</td>
<td>3.63</td>
<td>3.48</td>
<td>3.37</td>
<td>3.29</td>
<td>3.23</td>
<td>3.18</td>
<td>3.14</td>
</tr>
<tr>
<td>10</td>
<td>4.96</td>
<td>4.10</td>
<td>3.71</td>
<td>3.48</td>
<td>3.33</td>
<td>3.22</td>
<td>3.14</td>
<td>3.07</td>
<td>3.02</td>
<td>2.98</td>
</tr>
</tbody>
</table>

Figures from Johnson & Kuby, 2008.

Rowe, D.B.
10: Inferences Involving Two Populations
10.6 Inference for Ratio of Two Variances Two Ind. Samples
Hypothesis Testing Procedure

One tailed tests: Arrange H_0 & H_a so H_a is always “greater than”

$H_0: \sigma_1^2 \geq \sigma_2^2 \hspace{1em} \text{vs.} \hspace{1em} H_a: \sigma_1^2 < \sigma_2^2 \rightarrow H_0: \frac{\sigma_2^2}{\sigma_1^2} \leq 1 \hspace{1em} \text{vs.} \hspace{1em} H_a: \frac{\sigma_2^2}{\sigma_1^2} > 1 \hspace{1em} F^* = \frac{s_2^2}{s_1^2}$

$H_0: \sigma_1^2 \leq \sigma_2^2 \hspace{1em} \text{vs.} \hspace{1em} H_a: \sigma_1^2 > \sigma_2^2 \hspace{1em} \text{vs.} \hspace{1em} H_a: \frac{\sigma_2^2}{\sigma_1^2} > 1 \hspace{1em} F^* = \frac{s_1^2}{s_2^2}$

Reject H_0 if $F^* = \frac{s_n^2}{s_d^2} > F(df_n,df_d,\alpha)$.

Two tailed tests: put larger sample variance s^2 in numerator

$H_0: \sigma_1^2 = \sigma_2^2 \hspace{1em} \text{vs.} \hspace{1em} H_a: \sigma_1^2 \neq \sigma_2^2 \rightarrow H_0: \frac{\sigma_n^2}{\sigma_d^2} = 1 \hspace{1em} \text{vs.} \hspace{1em} H_a: \frac{\sigma_n^2}{\sigma_d^2} \neq 1$

$\sigma_n^2 = \sigma_1^2$ if $s_1^2 > s_2^2$, $\sigma_n^2 = \sigma_2^2$ if $s_2^2 > s_1^2$

Reject H_0 if $F^* = \frac{s_n^2}{s_d^2} > F(df_n,df_d,\alpha/2)$.

Rowe, D.B.
10: Inferences Involving Two Populations

10.6 Inference for Ratio of Two Variances Two Ind. Samples

Hypothesis Testing Procedure

Step 1

- $H_0: \sigma_m^2 \geq \sigma_f^2$ vs. $H_a: \sigma_m^2 < \sigma_f^2$
- $H_0: \sigma_m^2 \leq \sigma_f^2$ vs. $H_a: \sigma_m^2 > \sigma_f^2$
- $H_0: \sigma_m^2 / \sigma_f^2 \leq 1$ vs. $H_a: \sigma_m^2 / \sigma_f^2 > 1$

Step 2

- $F^* = \frac{s_m^2}{s_f^2}$
- $df_n = 36$
- $df_f = 70$
- $\alpha = .01$

Step 3

- $F^* = 8.1 / 6.6 = 1.23$
- $F(36, 70, .01) = 1.92$

Step 4

- Fail to Reject H_0 at level 1.23 < 1.92
Chapter 10: Inferences Involving Two Populations

Questions?