Class 20

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 8.4 - 8.5

Lecture Chapter 8.6

Review Chapter 7
Recap Chapter 8.4 - 8.5
8: Introduction to Statistical Inference
8.4 The Nature of Hypothesis Testing

Example 1: Friend’s Party.

H_0: ”The Party will be a great time”

vs.

H_a: “The party will be a dud.”

Example 2: Math 1700 Students Height

H_0: The mean height of Math 1700 students is 69”, $\mu = 69$”.

vs.

H_a: The mean height of Math 1700 students is not 69”, $\mu \neq 69$”.

Rowe, D.B.
8: Introduction to Statistical Inference
8.4 The Nature of Hypothesis Testing

Example 1: Friend’s Party

H_0: ”The Party will be a great time”

vs.

H_a: “The party will be a dud.”

<table>
<thead>
<tr>
<th></th>
<th>Party Great</th>
<th>Party a dud.</th>
</tr>
</thead>
<tbody>
<tr>
<td>We go.</td>
<td>Correct Decision</td>
<td>Type II Error</td>
</tr>
<tr>
<td>We do not go.</td>
<td>Type I Error</td>
<td>Correct Decision</td>
</tr>
</tbody>
</table>

If do not go to party and it’s great, we made an error in judgment.

If go to party and it’s a dud, we made in error in judgment.
Example 2: Math 1700 Height

\[H_0: \mu = 69'' \]

vs.

\[H_a: \mu \neq 69'' \]

If we reject \(H_0 \) and it is true, we made an error in judgment.

If we do not reject \(H_0 \) and it is false, we have made an error in judgment.
8: Introduction to Statistical Inference
8.4 The Nature of Hypothesis Testing

Type I Error: …true null hypothesis H_0 is rejected.

Level of Significance (α): The probability of committing a type I error. (Sometimes α is called the false positive rate.)

Type II Error: … favor … null hypothesis that is actually false.

Type II Probability (β):
The probability of committing a type II error.

<table>
<thead>
<tr>
<th></th>
<th>H_0 True</th>
<th>H_0 False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Not</td>
<td>Type A Correct</td>
<td>Type II Error</td>
</tr>
<tr>
<td>Reject H_0</td>
<td>Decision $(1-\alpha)$</td>
<td>(β)</td>
</tr>
<tr>
<td>Reject H_0</td>
<td>Type I Error</td>
<td>Type B Correct</td>
</tr>
<tr>
<td></td>
<td>(α)</td>
<td>Decision $(1-\beta)$</td>
</tr>
</tbody>
</table>
8: Introduction to Statistical Inference
8.4 The Nature of Hypothesis Testing

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision “reject H_0” or “fail to reject H_0.”

Example: Friend’s Party
Fraction of parties that were good.

Example: Math 1700 Heights
Sample mean height.
8: Introduction to Statistical Inference
8.5 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H₀) and alternative (Hₐ) hypotheses
H₀: μ = 69” vs. Hₐ: μ ≠ 69”

Step 2 The Hypothesis Test Criteria: Test statistic.
\[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]
σ known, n is “large” so by CLT \(\bar{x} \) is normal
\(z^* \) is normal

Step 3 The Sample Evidence: Calculate test statistic.
\[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74 \]
n=15, \(\bar{x} = 67.2, \sigma = 4 \)

Step 4 The Probability Distribution:
\[P(z > |z^*|) = p - value \rightarrow 0.0819 \]

Step 5 The Results:
\(p - value \leq \alpha \), reject \(H_0 \), \(p - value > \alpha \) fail to reject \(H_0 \)
\(\alpha = 0.05 \)
Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Chapter 8 # 13, 15, 21, 23, 25, 33, 45, 53, 55, 73, 77, 87, 89, 93, 103, 105, 107, 137, 143, and 149
Lecture Chapter 8.6
Chapter 8: Introduction to Statistical Inference (continued)

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean μ (σ Known):
A Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 1 The Set-Up:

Step 2 The Hypothesis Test Criteria:

Step 3 The Sample Evidence:

Step 4 The Probability Distribution:

Step 5 The Results:
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (\(\sigma \) Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 1 The Set-Up:

a. Describe the population parameter of interest.

The population parameter of interest is the mean \(\mu \), the height of Math 1700 students.
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 1 The Set-Up:
 b. State the null hypothesis (H_0) and the alternative hypotheses (H_a).

<table>
<thead>
<tr>
<th>Null Hypothesis</th>
<th>Alternative Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Greater than or equal to (\geq)</td>
<td>Less than (<)</td>
</tr>
<tr>
<td>2. Less than or equal to (\leq)</td>
<td>Greater than (>)</td>
</tr>
<tr>
<td>3. Equal to (=)</td>
<td>Not equal to (\neq)</td>
</tr>
</tbody>
</table>

\[H_0: \mu = 69" \quad \text{vs.} \quad H_a: \mu \neq 69" \]

Figure from Johnson & Kuby, 2008.
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

Scenario:
True μ not likely
$\mu_0=69$”.

Reject H_0: $\mu=\mu_0$
(do not believe H_0)
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

Scenario:
True μ likely
$\mu_0 = 69$.

Fail to reject $H_0: \mu = \mu_0$ (not enough evidence not to believe H_0)

Let's say we set a cut-off mean $\mu_{critical} = 71$.

Hypothesized mean $\rightarrow \mu_0 = 69$
Sample mean $\xrightarrow{\bar{x}} 70$
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (\(\sigma\) Known): Classical Approach

We need a “better” (objective) way to set a “cut-off “ value or “cut-off” values for which we would either believe \(H_0\) or for which we would not have enough evidence not believe \(H_0\).

We need to use the normal distribution and probabilities.
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 2 The Hypothesis Test Criteria:

a. Check the assumptions.
Assume we know from past experience that σ=4. Assume that n is “large” so that by the CLT, \(\bar{x} \) is normally distributed.

\[
\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \quad \text{by SDSM}
\]
THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 2 The Hypothesis Test Criteria:
 b. Identify the probability distribution and the test statistic to be used.

The standard normal distribution is to be used because \(\bar{x} \) is expected to have a normal distribution.

Test Statistic for Mean:

\[
Z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}
\]

where \(\sigma \) is assumed to be known

(8.4)
THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 2 The Hypothesis Test Criteria:
 c. Determine the level of significance, α.

After much consideration, we assign a tolerable probability of a Type I error to be $\alpha = 0.05$.

Type I Error: When a true null hypothesis H_0 is rejected.
The Classical Hypothesis Test: 5 Steps

Step 3 The Sample Evidence:
 a. Collect a sample of information.
 Take a random sample from the population with mean \(\mu \) that being questioned.

 b. Calculate the value of the test statistic.

 \[
 z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74
 \]

Assuming \(n=15 \) and 67.2 is sample mean. With known \(\sigma = 4 \).
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 4 The Probability Distribution:
 a. Determine the critical region and critical value(s).

Critical Region: The set of values for the test statistic that will cause us to reject the null hypothesis.

Critical value(s): The “first” or “boundary” value(s) of the critical region(s).
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

\[H_0: \mu \geq \mu_0 \text{ vs. } H_a: \mu < \mu_0 \]

Reject \(H_0 \) if less than

\[
\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} < -z(\alpha)
\]

data indicates \(\mu < \mu_0 \) because \(\bar{x} \) is “a lot” smaller than \(\mu_0 \)
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

\[H_0: \mu \leq \mu_0 \text{ vs. } H_a: \mu > \mu_0 \]

Reject \(H_0 \) if greater then

\[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]

\(z(\alpha) \)

data indicates \(\mu > \mu_0 \)
because \(\bar{x} \) is “a lot” larger than \(\mu_0 \)
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

\[H_0: \mu = \mu_0 \text{ vs. } H_a: \mu \neq \mu_0 \]

Reject \(H_0 \) if less than

\[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]

\(-z(\alpha / 2)\)

or if is greater than

\[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]

\(z(\alpha / 2)\)

data indicates \(\mu \neq \mu_0 \), \(\bar{x} \) far from \(\mu_0 \)
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 4 The Probability Distribution:

a. Determine the critical region and critical value(s).

b. Determine whether or not the calculated test statistic is in the critical region.

$H_0: \mu = 69''$ vs. $H_a: \mu \neq 69''$

$P(z > z(\alpha / 2)) = \alpha / 2$, $z(0.025) = 1.96$

since two sided test.

Figure from Johnson & Kuby, 2008.
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 5 The Results:
 a. State the decision about H_0.
 Need a decision rule.

Decision rule:
 a. If the test statistic falls within the critical region, then the
decision must be reject H_0.
 b. If the test statistic is not in the critical region, then the
decision must be fail to reject H_0.
THE CLASSICAL HYPOTHESIS TEST: 5 STEPS

Step 5 The Results:

b. State the conclusion about H_a.

With $\alpha = 0.05$,

there is not sufficient evidence to reject H_0.

Fail to reject H_0.

Figure from Johnson & Kuby, 2008.
Let’s examine the hypothesis test

\[H_0: \mu \leq 69'' \text{ vs. } H_a: \mu > 69'' \]

with \(\alpha = 0.05 \) for the heights of Math 1700 students.

Generate random data values.
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

H₀: μ ≤ μ₀ vs. H₁: μ > μ₀

Generated 15×10⁶ normal data values from μ = 69" and σ=4". (Will repeat for μ = 72".)

Calculated 1×10⁶ means with n=15.
8: Introduction to Statistical Inference
8.6 Hypothesis Test of Mean (σ Known): Classical Approach

\[H_0: \mu \leq \mu_0 \text{ vs. } H_1: \mu > \mu_0 \]

When the true mean \(\mu = 69'' \), we reject \(H_0 \) \(\alpha \) fraction of the time.

Commit a Type I Error.

Given \(\alpha \), we want \(\mu_{\text{critical}} \).
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

Instead of μ_{critical} we find critical z, $z_{\text{critical}} = z(\alpha)$.

Do this by assuming that $H_0: \mu = 69''$ is true, then calculate

$$z = \frac{\bar{x} - 69}{4 / \sqrt{15}}$$
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

\[H_0: \mu \leq 69 \text{ vs. } H_a: \mu > 69 \]

\[\alpha = .05 \]

When the true mean \(\mu = 72 \), we do not reject \(H_0 \) \(\beta \) fraction of the time.

Commit a Type II Error

\[1 - \beta \]

\[\beta \]

\[\mu_{critical} \text{ (same)} \]
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (\(\sigma\) Known): Classical Approach

- Null Hypothesis: \(H_0: \mu \leq \mu_0\)
- Alternative Hypothesis: \(H_1: \mu > \mu_0\)

- Fail to Reject \(H_0\) when \(\mu = 69\)"
- Correct Decision \((1 - \alpha)\)
- Type II Error \((\beta)\)

- Reject \(H_0\) when \(\mu = 72\)"
- Type I Error \((\alpha)\)
- Correct Decision \((1 - \beta)\)

Power of the test:
\[1 - \beta = P(\text{Reject } H_0 | H_0 \text{ False})\]

Discrimination ability.
Ability to detect difference.
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

\[z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \]

n = 15
1 \times 10^6
\bar{x}'s

\[z = \frac{\bar{x} - 69}{4 / \sqrt{15}} \]

\[H_0: \mu \leq \mu_0 \text{ vs. } H_1: \mu > \mu_0 \]

Fail to Reject

\(z \)

Reject

H0 True
(\(\mu = 69'' \))

H0 False
(\(\mu = 72'' \))

Fail to Reject

Correct Decision
(1 - \(\alpha \))

Type II Error
(\(\beta \))

Reject

Type I Error
(\(\alpha \))

Correct Decision
(1 - \(\beta \))

Power of the test:

\[1 - \beta = P(\text{Reject } H_0 | H_0 \text{ False}) \]

Discrimination ability.
Ability to detect difference.

Rowe, D.B.
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

We want our α (Prob of Type I Error) to be small.

So why not just decrease α?

Decreasing α increases β. And vice versa.

$H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$

$n=15 \times 10^6$

$\bar{x}'s$

$z_{critical}$
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

H$_0$: $\mu \leq \mu_0$ vs. H$_1$: $\mu > \mu_0$

What is the solution?

Increase n.

Figure shows n increased to $n=30$ from $n=15$.

Note α and β both smaller with larger n.

Rowe, D.B.
8: Introduction to Statistical Inference

8.6 Hypothesis Test of Mean (σ Known): Classical Approach

What is the solution?

Increase n.

Figure shows n increased to $n = 30$ from $n = 15$.

Note α and β both smaller with larger n.

$H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$

$z = \frac{\bar{x} - 69}{4 / \sqrt{30}}$

$n=30$

1×10^6

$\bar{x}'s$

$1-\alpha$

$1-\beta$
Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Chapter 8 # 13, 15, 21, 23, 25, 33, 45 53, 55, 73, 77 87, 89, 93, 103, 105, 107 137, 143, and 149
Review Chapter 7
(Exam 5 Chapter)

Just the highlights!
7: Sample Variability
7.2 Sampling Distributions

When we take a random sample x_1,\ldots, x_n from a population, one of the things that we do is compute the sample mean \bar{x}.

The value of \bar{x} is not μ. Each time we take a random sample of size n (with replacement), we get a different set of values x_1,\ldots, x_n and a different value for \bar{x}.
7: Sample Variability
7.2 Sampling Distributions

$N=5$ balls in bucket, select $n=1$ with replacement. Population data values: 0, 2, 4, 6, 8.

<table>
<thead>
<tr>
<th>x</th>
<th>$P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/5</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
</tr>
<tr>
<td>4</td>
<td>1/5</td>
</tr>
<tr>
<td>6</td>
<td>1/5</td>
</tr>
<tr>
<td>8</td>
<td>1/5</td>
</tr>
</tbody>
</table>

$\mu = \sum_{i=1}^{n} [x_i P(x_i)] = 4$

$\sigma^2 = \sum_{i=1}^{n} [(x_i - \mu)^2 P(x_i)] = 8$

$\sigma = \sqrt{8} = 2\sqrt{2}$
N=5 balls in bucket, select $n=2$ with replacement.

Population data values: 0, 2, 4, 6, 8.

25 possible samples
7: Sample Variability
7.2 Sampling Distributions

Example: \(N=5 \), values: 0, 2, 4, 6, 8, \(n=2 \) (with replacement).

\[
\begin{align*}
\bar{x} &= 0, \text{ one time} & P(\bar{x} = 0) &= 1/25 \\
\bar{x} &= 1, \text{ two times} & P(\bar{x} = 1) &= 2/25 \\
\bar{x} &= 2, \text{ three times} & P(\bar{x} = 2) &= 3/25 \\
\bar{x} &= 3, \text{ four times} & P(\bar{x} = 3) &= 4/25 \\
\bar{x} &= 4, \text{ five times} & P(\bar{x} = 4) &= 5/25 \\
\bar{x} &= 5, \text{ four times} & P(\bar{x} = 5) &= 4/25 \\
\bar{x} &= 6, \text{ three times} & P(\bar{x} = 6) &= 3/25 \\
\bar{x} &= 7, \text{ two times} & P(\bar{x} = 7) &= 2/25 \\
\bar{x} &= 8, \text{ one time} & P(\bar{x} = 8) &= 1/25
\end{align*}
\]
7: Sample Variability
7.2 Sampling Distributions

Example: \(N=5 \), values: 0, 2, 4, 6, 8, \(n=2 \) (with replacement).

\[
\begin{align*}
P(\bar{x} = 0) &= 1/25 \\
P(\bar{x} = 1) &= 2/25 \\
P(\bar{x} = 2) &= 3/25 \\
P(\bar{x} = 3) &= 4/25 \\
P(\bar{x} = 4) &= 5/25 \\
P(\bar{x} = 5) &= 4/25 \\
P(\bar{x} = 6) &= 3/25 \\
P(\bar{x} = 7) &= 2/25 \\
P(\bar{x} = 8) &= 1/25
\end{align*}
\]

Represent this distribution function with a histogram.

Note that intermediate values of 1, 3, 5, 7 are now possible.

Figure from Johnson & Kuby, 2008.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM): If all possible random samples, each of size n, are taken from any population with mean μ and standard deviation σ, then the sampling distribution of sample means will have the following:

1. A mean $\mu_{\bar{x}}$ equal to μ
2. A standard deviation $\sigma_{\bar{x}}$ equal to $\frac{\sigma}{\sqrt{n}}$

Furthermore, if the sampled population has a normal distribution, then the sampling distribution of \bar{x} will also be normal for all samples of all sizes.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

The CLT: Assume that we have a population (arbitrary distribution) with mean \(\mu \) and standard deviation \(\sigma \).

If we take random samples of size \(n \) (with replacement), then for “large” \(n \), the distribution of the sample means the \(\bar{x} \)‘s is approximately normally distributed with

\[
\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
\]

where in general \(n \geq 30 \) is sufficiently “large,” but can be as small as 15 or as big as 50 depending upon the shape of distribution!
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

According to SDSM, if we had a sample x_1, \ldots, x_n of size $n=1, 2, 3, 4, 5, 15, 30, \text{ and } 50$ from Uniform(0,200) or Normal(100,(57.7)^2)

<table>
<thead>
<tr>
<th>Sample Size, n</th>
<th>Mean, $\mu_{\bar{x}}$</th>
<th>SD, $\sigma_{\bar{x}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>57.7350</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>40.8248</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>33.3333</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>28.8675</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>25.8199</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>14.9071</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>10.5409</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>8.1650</td>
</tr>
</tbody>
</table>

$$\mu = \frac{b-a}{2}$$
$$\sigma^2 = \frac{(b-a)^2}{12}$$

Theoretical values from the SDSM

$$\mu_{\bar{x}} = \mu$$
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

Expanded program to generate n million random observations

$x_1, \ldots, x_{n \times 10^6}$ from the Uniform($a=0, b=200$) and

also from the Normal($\mu=100, \sigma^2=(57.7)^2$) distributions,

for each of $n=1, 2, 3, 4, 5, 15, 30, \text{ and } 50$.

8 data sets of Uniform and Normal random observations
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

Sample means and standard deviations from each of the \(n \) million observations from the Uniform\((a=0, b=200)\) and Normal\((\mu=100, \sigma^2=(57.7)^2)\) distributions.

<table>
<thead>
<tr>
<th>i.e. (n=5, \ 5 \times 10^6)</th>
<th>Groups of (n=5)</th>
<th>Mean of groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_1, x_2, x_3, x_4, x_5)</td>
<td>(\overline{x}_1)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(x_6, x_7, x_8, x_9, x_{10})</td>
<td>(\overline{x}_2)</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>(x_{5000000})</td>
<td>(x_{4999996}, \ldots, x_{5000000})</td>
<td>(\overline{x}_{10^6})</td>
</tr>
</tbody>
</table>

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 1 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]

\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n=2 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 3 \) \(\times 10^6 \) means

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

\[S_{\bar{X}} \]

Histogram of means from normal

\[S_{\bar{X}} \]

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 4 \quad 1 \times 10^6 \) means

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

\(\bar{X} \rightarrow S_{\bar{X}} \)

Histogram of means from normal

\(\bar{X} \rightarrow S_{\bar{X}} \)

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 5 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \quad \sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

\[S_{\bar{X}} \]
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 15 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

\[S_{\bar{X}} \]

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 50 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

Rowe, D.B.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

With a population mean \(\mu \) and standard deviation \(\sigma \).

Random samples of size \(n \) with replacement, for “large” \(n \), the distribution of the sample means quickly becomes normally distributed with

\[
\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
\]

Generally \(n \geq 30 \) is sufficiently “large,” but can be as small as 15 or as big as 50 depending upon the shape of distribution!
Assume that this is a population of data.

Does this population look normally distributed?

$N=108$ values

$\mu = 67.0$

$\sigma = 3.7$
If I’m interested in the mean $\mu_{\bar{x}}$ of a sample of size $n=15$, then by SDSM $\mu_{\bar{x}} = \mu$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$, in addition, by the CLT \bar{x} is (hopefully) normally distributed.

I wrote a computer program to take a sample of $n=15$ from the population of N heights with replacement 10^6 times.

$N=108$ values
7: Sample Variability

7.4 Application of the Sampling Distribution of Sample Means

By SDSM, $\mu_x = 67.0$ and $\sigma_x = \frac{3.7}{\sqrt{1}} = 3.7$.

N = 108 values

$\mu = 67.0$
$\sigma = 3.7$

Histogram of the 1 million means

$n=1$

Put normal with same μ_x and σ_x.

Rowe, D.B.
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

By SDSM, $\mu_x = 67.0$ and $\sigma_x = \frac{3.7}{\sqrt{3}} = 2.1$.

N=108 values

$\mu = 67.0$

$\sigma = 3.7$
7: Sample Variability

7.4 Application of the Sampling Distribution of Sample Means

By SDSM, \(\mu_x = 67.0 \) and \(\sigma_x = \frac{3.7}{\sqrt{5}} = 1.7 \).

\[N = 108 \text{ values} \]

\[\mu = 67.0 \]

\[\sigma = 3.7 \]
7: Sample Variability

7.4 Application of the Sampling Distribution of Sample Means

By SDSM, \(\mu_x = 67.0 \) and \(\sigma_x = \frac{3.7}{\sqrt{15}} = 1.0 \).

\(N=108 \) values

\(\mu = 67.0 \)

\(\sigma = 3.7 \)

By CLT becomes normal
Now that we believe \overline{x} is normal with $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}} = \sigma / \sqrt{n}$, we can find probabilities by first converting to z scores.

\begin{align*}
P(a < \overline{x} < b) & \quad \text{same area} \\
P(c < z < d) & \quad \text{same area} \\
Z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} & \quad C = \frac{a - \mu_{\overline{x}}}{\sigma_{\overline{x}}} \quad D = \frac{b - \mu_{\overline{x}}}{\sigma_{\overline{x}}} \\
\end{align*}

and use the table in book.
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

Example:
What is probability that sample mean \bar{x} from a random sample of $n=15$ heights is greater than 69" when $\mu = 67.0$ and $\sigma = 3.7$?

We first convert to z scores

$$z = \frac{\bar{x} - \mu_x}{\sigma_{\bar{x}}}$$

where $d = \frac{b - \mu_x}{\sigma_{\bar{x}}} = \frac{69 - 67}{3.7 / \sqrt{15}} = 2.09$, then use the table in book.

$$P(2.09 < z) = .5 - P(0 < z < 2.09) = .5 - .4817 = .0183$$