Class 17

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 7.3

Lecture Chapter 7.4

TA go over Exam 4.
Recap Chapter 7.3
Sample distribution of sample means (SDSM): If all possible random samples, each of size n, are taken from any population with mean μ and standard deviation σ, then the sampling distribution of sample means will have the following:

1. A mean $\mu_{\bar{x}}$ equal to μ
2. A standard deviation $\sigma_{\bar{x}}$ equal to $\frac{\sigma}{\sqrt{n}}$

Furthermore, if the sampled population has a normal distribution, then the sampling distribution of \bar{x} will also be normal for all samples of all sizes.
The CLT is important because we are going to make probability statements about the population mean μ based upon a sample of data x_1, \ldots, x_n and a single sample mean \bar{x}.

We may not know the distribution that the individual observations come from, but we will know by CLT that the sample mean is approximately normal with

$$
\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}.
$$
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

According to SDSM, if we had a sample $x_1,...,x_n$ of size $n=1, 2, 3, 4, 5, 15, 30, \text{ and } 50$ from Uniform(0,200) or Normal(100,(57.7)^2)

<table>
<thead>
<tr>
<th>Sample Size, n</th>
<th>Mean, $\mu_{\bar{x}}$</th>
<th>SD, $\sigma_{\bar{x}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>57.7350</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>40.8248</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>33.3333</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>28.8675</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>25.8199</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>14.9071</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>10.5409</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>8.1650</td>
</tr>
</tbody>
</table>

For Uniform a to b

$$\mu = \frac{b-a}{2}$$
$$\sigma^2 = \frac{(b-a)^2}{12}$$

Theoretical values from the SDSM

$$\mu_{\bar{x}} = \mu$$
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$
I wrote a computer program to generate 1 million random observations $x_1,\ldots,x_{1000000}$ from the Uniform($a=0, b=200$) and also from Normal($\mu=100, \sigma^2=(57.7)^2$) distributions.

I showed you the histograms being formed!
Expanded program to generate \(n \) million random observations

\[x_1, \ldots, x_{n 	imes 10^6} \]

from the Uniform(\(a=0, b=200 \)) and

also from the Normal(\(\mu=100, \sigma^2=(57.7)^2 \)) distributions,

for each of \(n=1, 2, 3, 4, 5, 15, 30, \) and 50.

8 data sets of Uniform and Normal random observations
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

$n=1 \quad 1 \times 10^6$ observations

$\mu = 100$
$\sigma = 57.73$

observations are uniform

$\mu = 100$
$\sigma = 57.73$

observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 2 \quad 2 \times 10^6 \text{ observations} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

observations are uniform

observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 3 \quad 3 \times 10^6 \text{ observations} \]

\[\mu = 100 \quad \sigma = 57.73 \]

observations are uniform

\[\mu = 100 \quad \sigma = 57.73 \]

observations are normal
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 4 \quad \text{4} \times 10^6 \text{ observations} \)

\(\mu = 100 \quad \sigma = 57.73 \)

observations are uniform

\(\mu = 100 \quad \sigma = 57.73 \)

observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 5 \quad 5 \times 10^6 \text{ observations} \]

\[\mu = 100 \quad \sigma = 57.73 \]

- observations are uniform
- observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 15 \quad 15 \times 10^6 \) observations

\(\mu = 100 \quad \sigma = 57.73 \)

observations are uniform

\(\mu = 100 \quad \sigma = 57.73 \)

observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 30 \quad 30 \times 10^6 \text{ observations} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

observations are uniform

\[\mu = 100 \]
\[\sigma = 57.73 \]

observations are normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 50 \quad 50 \times 10^6 \) observations

\(\mu = 100 \)
\(\sigma = 57.73 \)

observations are uniform

observations are normal

Rowe, D.B.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

Sample means and standard deviations from each of the n million observations from the Uniform($a=0,b=200$) and Normal($\mu=100,\sigma^2=(57.7)^2$) distributions.

i.e. $n=5$, 5×10^6

Groups of $n=5$

<table>
<thead>
<tr>
<th>Groups of $n=5$</th>
<th>Mean of groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1, x_2, x_3, x_4, x_5</td>
<td>\bar{x}_1</td>
</tr>
<tr>
<td>$x_6, x_7, x_8, x_9, x_{10}$</td>
<td>\bar{x}_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$x_{4999996}, \ldots, x_{5000000}$</td>
<td>\bar{x}_{10^6}</td>
</tr>
</tbody>
</table>

Histogram of \bar{x}'s
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

Computed sample means and standard deviations from the one million means $\bar{x}_1, \ldots, \bar{x}_{10^6}$.

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Mean $\mu_{\bar{x}}$</th>
<th>Mean U \bar{X}</th>
<th>Mean N \bar{X}</th>
<th>SD $\sigma_{\bar{x}}$</th>
<th>SD U $s_{\bar{x}}$</th>
<th>SD N $s_{\bar{x}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100.0642</td>
<td>100.0077</td>
<td>57.7350</td>
<td>57.7071</td>
<td>57.7888</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>99.9828</td>
<td>100.0037</td>
<td>40.8248</td>
<td>40.8418</td>
<td>40.8206</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>99.9909</td>
<td>99.9627</td>
<td>33.3333</td>
<td>33.3418</td>
<td>33.2984</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>99.9559</td>
<td>100.0642</td>
<td>28.8675</td>
<td>28.8946</td>
<td>28.8126</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100.0074</td>
<td>100.0320</td>
<td>25.8199</td>
<td>25.7865</td>
<td>25.8397</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100.0134</td>
<td>99.9517</td>
<td>14.9071</td>
<td>14.9035</td>
<td>14.8918</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>99.9934</td>
<td>99.9836</td>
<td>10.5409</td>
<td>10.5335</td>
<td>10.5352</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>99.9918</td>
<td>99.9890</td>
<td>8.1650</td>
<td>8.1605</td>
<td>8.1709</td>
</tr>
</tbody>
</table>
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 1 \quad 1 \times 10^6 \text{ means} \]

\[
\mu = 100 \\
\sigma = 57.73
\]

Histogram of means from uniform

Histogram of means from normal

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

$n=2 \quad 1 \times 10^6 \text{ means}$

$\mu = 100$
$\sigma = 57.73$

Histogram of means from uniform

Histogram of means from normal

Rowe, D.B.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

\(n = 3 \quad 1 \times 10^6 \) means

\[\mu = 100 \]
\[\sigma = 57.73 \]

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\(n = 4 \quad 1 \times 10^6 \) means

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

\(\bar{X} \)

\[S_{\bar{X}} \]

Histogram of means from normal

\(\bar{X} \)

\[S_{\bar{X}} \]
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 5 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]

\[\sigma = 57.73 \]

Histogram of means from uniform

\[\overline{X} \]

\[S_{\overline{X}} \]

Histogram of means from normal

\[\overline{X} \]

\[S_{\overline{X}} \]

Rowe, D.B.
7: Sample Variability

7.3 The Sampling Distribution of Sample Means

\[n = 15 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

\[S_{\bar{X}} \]
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

$n=30 \quad 1 \times 10^6$ means

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

Rowe, D.B.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

\[n = 50 \quad 1 \times 10^6 \text{ means} \]

\[\mu = 100 \]
\[\sigma = 57.73 \]

Histogram of means from uniform

Histogram of means from normal

Rowe, D.B.
7: Sample Variability
7.3 The Sampling Distribution of Sample Means

With a population mean μ and standard deviation σ.

Random samples of size n with replacement, for “large” n, the distribution of the sample means quickly becomes normally distributed with

$$
\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
$$

Generally $n \geq 30$ is sufficiently “large,” but can be as small as 15 or as big as 50 depending upon the shape of distribution!
7: Sample Variability

Questions?

Homework: Chapter 7 # 1, 6, 21, 23, 29, 35
Lecture Chapter 7.4
Chapter 7: Sample Variability (continued)

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Recall: When we take a sample of data x_1, \ldots, x_n from a population, then compute an estimate of a parameter it is called a sample statistic. i.e. \bar{x} for μ

Sampling Distribution of a sample statistic: The distribution of values for a sample statistic obtained from repeated samples, all of the same size and all drawn from the same population.
7: Sample Variability

7.2 Sampling Distributions

The Sampling Distribution of Sample Means

- Statistical population being studied
- Repeated sampling is needed to form the sampling distribution.
- All possible samples of size n
- One value of the sample statistic (x in this case) corresponding to the parameter of interest (μ in this case) is obtained from each sample
- Then all of these values of the sample statistic, x, are used to form the sampling distribution.

As the number of samples increases the empirical dist. turns into theoretical dist.

Figure from Johnson & Kuby, 2008.
3: Descriptive Analysis and Bivariate Data

3.2 Bivariate Data: Scatter Diagram

Our data.

Find yourself. If not here then removed or your response incomplete.
7: Sample Variability

7.4 Application of the Sampling Distribution of Sample Means

Assume that this is a population of data.

$\mu = 66.9$, $\sigma = 4.2$

$N = 90$ values

Does this population look normally distributed?

Put normal with same μ and σ.

Rowe, D.B.
If I’m interested in the mean $\mu_{\bar{x}}$ of a sample of size $n=15$, then by **SDSM** $\mu_{\bar{x}} = \mu$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$, in addition, by the **CLT** \bar{x} is (hopefully) normally distributed.

I wrote a computer program to take a sample of $n=1,3,5,15$ from the population of N heights with replacement 10^6 times. $N=90$ values
By SDSM, $\mu_{\bar{x}} = 66.9$ and $\sigma_{\bar{x}} = \frac{4.2}{\sqrt{1}} = 4.2$.

$N=90$ values

$\mu = 66.9$

$\sigma = 4.2$
7: Sample Variability

7.4 Application of the Sampling Distribution of Sample Means

By SDSM, \(\mu_x = 66.9 \) and \(\sigma_x = \frac{4.2}{\sqrt{3}} = 2.4 \).

\[N = 90 \text{ values} \]

\[\mu = 66.9 \]

\[\sigma = 4.2 \]
By SDSM, $\mu_{\bar{x}} = 66.9$ and $\sigma_{\bar{x}} = \frac{4.2}{\sqrt{5}} = 1.9$.

$N=90$ values

$\mu = 66.9$

$\sigma = 4.2$
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

By SDSM, \(\mu_{\bar{x}} = 66.9 \) and \(\sigma_{\bar{x}} = \frac{4.2}{\sqrt{15}} = 1.1 \).

\[\begin{align*}
N &= 90 \text{ values} \\
\mu &= 66.9 \\
\sigma &= 4.2
\end{align*} \]

By CLT becomes normal
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

Now that we believe that the mean \bar{x} from a sample of $n=15$ is normally distributed with mean $\mu_{\bar{x}} = \mu$

and standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$, we can find probabilities.
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

To find these probabilities, we first convert to z scores

$$P(a < \bar{x} < b) \quad P(c < z < d) \quad P(b < \bar{x}) \quad P(d < z) \quad P(\bar{x} < a) \quad P(z < c)$$

$$z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$$

$$c = \frac{a - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$$

$$d = \frac{b - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$$

and use the table in book.
7: Sample Variability
7.4 Application of the Sampling Distribution of Sample Means

Example:
What is probability that sample mean \bar{x} from a random sample of $n=15$ heights is greater than 69” when $\mu = 67.0$ and $\sigma = 3.7$?
7: Sample Variability

Questions?

Homework: Chapter 7 # 1, 6, 21, 23, 29, 35
Discussion on Course

We’re moving into a new phase of the course…

Part III on Inferential Statistics.

Parts I and II were all foundational material for Part III.

Before we discussed …
Discussion on Course

Part I: Descriptive Statistics

Chapter 1: Statistics
Background material. Definitions.

Chapter 2: Descriptive Analysis and Presentation
single variable data
Graphs, Central Tendency, Dispersion, Position

Chapter 3: Descriptive Analysis and Presentation
bivariate data
Scatter plot, Correlation, Regression
Discussion on Course

Part II: Probability

Chapter 4: Probability
Conditional, Rules, Mutually Exclusive, Independent

Chapter 5: Probability Distributions (Discrete)
Random variables, Probability Distributions, Mean & Variance, Binomial Distribution with Mean & Variance

Chapter 6: Probability Distributions (Continuous)
Normal Distribution, Standard Normal, Applications, Notation

Chapter 7: Sample Variability
Sampling Distributions, SDSM, CLT
Discussion on Course

Part III: Inferential Statistics

Chapter 8: Introduction to Statistical Inferences
Hypothesis testing

Chapter 9: Inferences Involving One Population
Mean μ (σ unknown), proportion p, variance σ^2

Chapter 10: Inferences Involving Two Populations
Difference in means $\mu_1 - \mu_2$, proportions $p_1 - p_2$, variances σ_1^2 / σ_2^2

Part IV: More Inferential Statistics
Chapter 11: Applications of Chi-Square
Chi-square statistics. We will discuss later.
Discussion on Course

Next Lecture will be on Chapter 8.

Chapter 8: Introduction to Statistical Inferences
Hypothesis testing
Go Over Exam 4