Class 13

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
Agenda:

Recap Chapter 6.1 - 6.3

Lecture Chapter 6.4 - 6.6

TA Go Over Exam 3.
Recap Chapter 6.1 - 6.3
The mathematical formula for the normal distribution is (p 315):

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

where
\[e = 2.718281828459046… \]
\[\pi = 3.141592653589793… \]
\[\mu = \text{population mean} \]
\[\sigma = \text{population std. deviation} \]

We will not use this formula.
Normal distribution with population mean μ and variance σ^2.

We want to know the (red) area under the normal distribution between x_1 and x_2.

Similar to discrete probabilities adding to 1.

The total area under the normal distribution is 1.
Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

Let’s say we want to know the red area under the normal distribution between $x_1 = 3$ and $x_2 = 7$.

What is the area under the normal distribution between these two values?
6: Normal Probability Distributions
6.3 The Standard Normal Probability Distributions

Normal distribution with $\mu=5$ and $\sigma^2=4$.

We drew a rectangle?

$$A = (x_2 - x_1) \times \text{(height)}$$

$$x_2 - x_1 = 7 - 3 = 4$$

height ≈ 0.2

Area ≈ 0.8
6: Normal Probability Distributions

6.3 The Standard Normal Probability Distributions

Normal distribution with \(\mu = 5 \) and \(\sigma^2 = 4 \).

But the normal distribution is not a rectangle.

Someone had the idea to convert normal distribution to the standard normal.

Subtract \(\mu \) and divide this by \(\sigma \) for every value of \(x \).

\[
z = \frac{x - \mu}{\sigma}.
\]

Area between \(x_1 \) and \(x_2 \) is the same as area between \(z_1 \) and \(z_2 \).
6: Normal Probability Distributions
6.3 The Standard Normal Probability Distributions

Normal distribution $\mu=5$ & $\sigma^2=4$ and standard normal distribution.

Area between x_1 and x_2 is same as the area between z_1 and z_2.

If $x_1 = 3$ and $x_2 = 7$ then $z_1 = (x_1 - \mu)/\sigma = -1$ and $z_2 = (x_2 - \mu)/\sigma = 1$?

Rowe, D.B.
6: Normal Probability Distributions
6.3 The Standard Normal Probability Distributions

Now we can simply look up the z areas in a table.

Appendix B Table 3 page 662.
6: Normal Probability Distributions

Appendix B

Table 3

Page 662

Areas of the Standard Normal Distribution

The entries in this table are the probabilities that a random variable, with a standard normal distribution, assumes a value between 0 and \(z \); the probability is represented by the shaded area under the curve in the accompanying figure. Areas for negative values of \(z \) are obtained by symmetry.

<table>
<thead>
<tr>
<th>(z)</th>
<th>0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.004</td>
<td>0.008</td>
<td>0.012</td>
<td>0.016</td>
<td>0.019</td>
<td>0.023</td>
<td>0.027</td>
<td>0.031</td>
<td>0.035</td>
</tr>
<tr>
<td>0.1</td>
<td>0.039</td>
<td>0.043</td>
<td>0.047</td>
<td>0.051</td>
<td>0.055</td>
<td>0.059</td>
<td>0.063</td>
<td>0.067</td>
<td>0.071</td>
<td>0.075</td>
</tr>
<tr>
<td>0.2</td>
<td>0.079</td>
<td>0.083</td>
<td>0.087</td>
<td>0.091</td>
<td>0.094</td>
<td>0.098</td>
<td>0.102</td>
<td>0.106</td>
<td>0.110</td>
<td>0.114</td>
</tr>
<tr>
<td>0.3</td>
<td>0.117</td>
<td>0.121</td>
<td>0.125</td>
<td>0.129</td>
<td>0.133</td>
<td>0.136</td>
<td>0.139</td>
<td>0.144</td>
<td>0.148</td>
<td>0.152</td>
</tr>
<tr>
<td>0.4</td>
<td>0.155</td>
<td>0.159</td>
<td>0.162</td>
<td>0.166</td>
<td>0.170</td>
<td>0.173</td>
<td>0.176</td>
<td>0.180</td>
<td>0.184</td>
<td>0.187</td>
</tr>
<tr>
<td>0.5</td>
<td>0.191</td>
<td>0.195</td>
<td>0.198</td>
<td>0.201</td>
<td>0.204</td>
<td>0.208</td>
<td>0.212</td>
<td>0.215</td>
<td>0.219</td>
<td>0.222</td>
</tr>
<tr>
<td>0.6</td>
<td>0.225</td>
<td>0.229</td>
<td>0.232</td>
<td>0.235</td>
<td>0.239</td>
<td>0.242</td>
<td>0.245</td>
<td>0.248</td>
<td>0.251</td>
<td>0.254</td>
</tr>
<tr>
<td>0.7</td>
<td>0.258</td>
<td>0.261</td>
<td>0.264</td>
<td>0.267</td>
<td>0.270</td>
<td>0.273</td>
<td>0.276</td>
<td>0.279</td>
<td>0.282</td>
<td>0.285</td>
</tr>
<tr>
<td>0.8</td>
<td>0.288</td>
<td>0.291</td>
<td>0.294</td>
<td>0.297</td>
<td>0.299</td>
<td>0.302</td>
<td>0.305</td>
<td>0.308</td>
<td>0.310</td>
<td>0.313</td>
</tr>
<tr>
<td>0.9</td>
<td>0.315</td>
<td>0.318</td>
<td>0.321</td>
<td>0.324</td>
<td>0.326</td>
<td>0.329</td>
<td>0.331</td>
<td>0.334</td>
<td>0.336</td>
<td>0.339</td>
</tr>
<tr>
<td>1.0</td>
<td>0.341</td>
<td>0.343</td>
<td>0.346</td>
<td>0.349</td>
<td>0.351</td>
<td>0.354</td>
<td>0.357</td>
<td>0.359</td>
<td>0.362</td>
<td>0.365</td>
</tr>
<tr>
<td>1.1</td>
<td>0.364</td>
<td>0.366</td>
<td>0.368</td>
<td>0.370</td>
<td>0.372</td>
<td>0.374</td>
<td>0.377</td>
<td>0.379</td>
<td>0.381</td>
<td>0.383</td>
</tr>
<tr>
<td>1.2</td>
<td>0.384</td>
<td>0.386</td>
<td>0.388</td>
<td>0.390</td>
<td>0.392</td>
<td>0.394</td>
<td>0.396</td>
<td>0.398</td>
<td>0.399</td>
<td>0.401</td>
</tr>
<tr>
<td>1.3</td>
<td>0.403</td>
<td>0.404</td>
<td>0.406</td>
<td>0.408</td>
<td>0.410</td>
<td>0.411</td>
<td>0.413</td>
<td>0.414</td>
<td>0.416</td>
<td>0.417</td>
</tr>
<tr>
<td>1.4</td>
<td>0.419</td>
<td>0.420</td>
<td>0.422</td>
<td>0.423</td>
<td>0.425</td>
<td>0.426</td>
<td>0.427</td>
<td>0.429</td>
<td>0.430</td>
<td>0.431</td>
</tr>
<tr>
<td>1.5</td>
<td>0.432</td>
<td>0.434</td>
<td>0.435</td>
<td>0.437</td>
<td>0.438</td>
<td>0.439</td>
<td>0.440</td>
<td>0.441</td>
<td>0.442</td>
<td>0.443</td>
</tr>
<tr>
<td>1.6</td>
<td>0.445</td>
<td>0.446</td>
<td>0.447</td>
<td>0.448</td>
<td>0.449</td>
<td>0.450</td>
<td>0.451</td>
<td>0.452</td>
<td>0.453</td>
<td>0.454</td>
</tr>
<tr>
<td>1.7</td>
<td>0.455</td>
<td>0.456</td>
<td>0.457</td>
<td>0.458</td>
<td>0.459</td>
<td>0.460</td>
<td>0.461</td>
<td>0.462</td>
<td>0.463</td>
<td>0.464</td>
</tr>
<tr>
<td>1.8</td>
<td>0.464</td>
<td>0.465</td>
<td>0.466</td>
<td>0.467</td>
<td>0.468</td>
<td>0.469</td>
<td>0.470</td>
<td>0.471</td>
<td>0.472</td>
<td>0.473</td>
</tr>
<tr>
<td>1.9</td>
<td>0.471</td>
<td>0.472</td>
<td>0.473</td>
<td>0.474</td>
<td>0.475</td>
<td>0.476</td>
<td>0.477</td>
<td>0.478</td>
<td>0.479</td>
<td>0.480</td>
</tr>
<tr>
<td>2.0</td>
<td>0.477</td>
<td>0.478</td>
<td>0.479</td>
<td>0.480</td>
<td>0.480</td>
<td>0.481</td>
<td>0.482</td>
<td>0.482</td>
<td>0.483</td>
<td>0.484</td>
</tr>
<tr>
<td>2.1</td>
<td>0.482</td>
<td>0.483</td>
<td>0.484</td>
<td>0.485</td>
<td>0.486</td>
<td>0.487</td>
<td>0.487</td>
<td>0.488</td>
<td>0.488</td>
<td>0.489</td>
</tr>
<tr>
<td>2.2</td>
<td>0.486</td>
<td>0.487</td>
<td>0.488</td>
<td>0.489</td>
<td>0.490</td>
<td>0.491</td>
<td>0.492</td>
<td>0.493</td>
<td>0.493</td>
<td>0.494</td>
</tr>
<tr>
<td>2.3</td>
<td>0.489</td>
<td>0.490</td>
<td>0.491</td>
<td>0.492</td>
<td>0.492</td>
<td>0.493</td>
<td>0.494</td>
<td>0.495</td>
<td>0.495</td>
<td>0.496</td>
</tr>
<tr>
<td>2.4</td>
<td>0.491</td>
<td>0.492</td>
<td>0.492</td>
<td>0.493</td>
<td>0.493</td>
<td>0.494</td>
<td>0.494</td>
<td>0.495</td>
<td>0.495</td>
<td>0.496</td>
</tr>
</tbody>
</table>
The entries in this table are the probabilities that a random variable, with a standard normal distribution, assumes a value between 0 and \(z \); the probability is represented by the shaded area under the curve in the accompanying figure. Areas for negative values of \(z \) are obtained by symmetry.

- Total area under curve is 1.
- The area less than 0 is 0.5.
- The area greater than 0 is 0.5.
- The area from 0 to \(z \) is the same as the area from \(-z\) to 0.
- The area greater than \(z \) is 0.5 minus the area between 0 and \(z \).
- The area less than \(z \) is 0.5 plus the area between 0 and \(z \).
6.3 The Standard Normal Probability Distributions

Now we can simply look up the \(z \) areas in a table.

Appendix B Table 3 page 662.

Area between 0 and 1 is 0.3413.

Area between -1 and 1 is 0.6826
Normal curve with $\mu=5$ and $\sigma^2=4$.

With rectangle the area is $A = (x_2 - x_1) \times \text{(height)}$

Area ≈ 0.8

From the table it is $A = 0.6826$

We over estimated area and can refine by subtracting triangles.
With rectangle the area is
\[A = (x_2 - x_1) \times \text{(height)} \]
Area \(\approx 0.8 \)

From the table it is
\[A = 2(0.3413) = 0.6826 \]

We over estimated, refine by subtracting triangles.
\[A \approx (x_2 - x_1) \times \text{(height)} - 2 \times 0.5 \times \frac{(x_2 - x_1)}{2} \times (0.2 - 0.125) \]
\[A \approx 0.65 \]
not bad approx
6: Normal Probability Distributions

Questions?

Homework: Chapter 6 # 7, 9, 13, 17, 29, 31, 33, 41, 43, 57, 59, 71, 89
Chapter 6: Normal Probability Distributions continued

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science
We already discussed converting from a general normal distribution (x axis) to the standard normal distribution (z axis).

Standard Score

In words:

$$z = \frac{x - \text{(mean of } x)}{\text{standard deviation of } x}$$

In algebra:

$$z = \frac{x - \mu}{\sigma}$$

(6.3)
Assume that IQ scores are normally distributed with a mean μ of 100 and a standard deviation σ of 16.

If a person is picked at random, what is the probability that his or her IQ is between 100 and 115?

i.e. $P(100 < x < 115)$?

Figures from Johnson & Kuby, 2008.
6: Normal Probability Distributions
6.4 Applications of Normal Distributions

IQ scores normally distributed
\(\mu = 100 \) and \(\sigma = 16 \).

\[P(100 < x < 115) \]

\[z = \frac{x - \mu}{\sigma} \]

\[z_1 = \frac{x_1 - \mu}{\sigma} = \]

\[z_2 = \frac{x_2 - \mu}{\sigma} = \]

Figures from Johnson & Kuby, 2008.
6: Normal Probability Distributions
6.4 Applications of Normal Distributions

IQ scores normally distributed
$\mu=100$ and $\sigma=16$.

$P(100 < x < 115)$

Now we can use the table.

$P(100 < x < 115) = P(0 < z < 0.94)$

Figures from Johnson & Kuby, 2008.
We can use the table in reverse.

Before we had a z value then looked up the probability (area) between 0 and z.

Now we will have a probability (area), call it α, and want to know the z value, call it $z(\alpha)$, that has a probability (area) of α larger than it.

\[\alpha = P(z > z(\alpha)) \]

Figure from Johnson & Kuby, 2008.
Example:
Let $\alpha=0.05$. Find $P(z>z(0.05))=0.05$.

Figures from Johnson & Kuby, 2008.
In Chapter 5 we discussed the binomial distribution

\[P(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \]

\(x = \# \) of heads when we flip a coin \(n \) times

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

\(n=2 \)
\(p=1/2 \)
If we flip the coin a large number of times

\[P(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

\[x = 0, \ldots, n \]

\(x \) = \# of heads when we flip a coin \(n \) times

\(n = 14 \)
\(p = 1/2 \)

It gets tedious to find the \(n = 14 \) probabilities!

Figure from Johnson & Kuby, 2008.
It gets tedious to find the $n=14$ probabilities!

So what we can do is use a histogram representation,

Figures from Johnson & Kuby, 2008.
6: Normal Probability Distributions
6.6 Normal Approximation of the Binomial Distribution

So what we can do is use a histogram representation,

\[n=14 \]
\[p=1/2 \]

Then approximate binomial probabilities with normal areas.

Figures from Johnson & Kuby, 2008.

Rowe, D.B.
Approximate binomial probabilities with normal areas. Use a normal with $\mu = np$, $\sigma^2 = np(1 - p)$

$$
\mu = (14)(.5) = 7 \\
\sigma^2 = (14)(.5)(1 - .5) = 3.5
$$

Figures from Johnson & Kuby, 2008.
6: Normal Probability Distributions
6.6 Normal Approximation of the Binomial Distribution

We then approximate binomial probabilities with normal areas.

\[P(x = 4) \text{ from the binomial formula} \]

is approximately \[P(3.5 < x < 4.5) \]

from the normal with \(\mu = 7, \sigma^2 = 3.5 \)

\(n = 14, p = 1/2 \)

Figures from Johnson & Kuby, 2008.
6: Normal Probability Distributions

6.6 Normal Approximation of the Binomial Distribution

From the binomial formula

\[P(4) = \frac{14!}{4!(14-4)!} \cdot (.5)^4 (1-.5)^{14-4} \]

\[P(x = 4) = 0.061 \]

\[P(1.34 < z < 1.87) = 0.0594 \]

From the Normal Distribution

\[P(3.5 < x < 4.5) \quad \mu = 7, \quad \sigma^2 = 3.5 \]

\[z_1 = \frac{x_1 - \mu}{\sigma} = \]

\[z_2 = \frac{x_2 - \mu}{\sigma} = \]

\(n=14, p=1/2 \)
6: Normal Probability Distributions

Questions?

Homework: Chapter 6 # 7, 9, 13, 17, 29, 31, 33, 41, 43, 57, 59, 71, 89
TA Go Over Exam 3.