Density Based Crime Mapping
Misclustered Crime and Unwarranted Punishment

Katy Weathington
Department of Mathematics, Statistics & Computer Science,
Marquette University, Milwaukee, Wisconsin

Dr. Shion Guha
Department of Mathematics, Statistics & Computer Science,
Marquette University, Milwaukee, Wisconsin

Background
• Crime analysts commonly use 3rd party black box software
 • Only the company actually knows specifically how it work
 • Eliminates transparency and accountability
• DBScan is a common density based algorithm that clusters by changes in density
• Merely clusters past data points, not predicting future events
• Therefore, use in future cases must be interpreted by a human

DBScan Algorithm
Parameters: Density is defined as the number of points, minPts, within ε distance
1. For each point, calculate number of points within ε
2. If at least minPts are within ε of a point, label it a core point. Otherwise, label it noise
3. Connect all core points along their ε neighborhood
4. Reassign any noise points within ε of a core point as a border point of that cluster

Data
• Gathered raw court data from City of Milwaukee Municipal Court and Circuit Court.
• Sanitized data into API readable format
• Ran data through Google Maps API to achieve latitude and longitude geocodes
• Multiple charges often originated from a single event
 • For clustering accuracy, we only plotted an event once

Crime Clustered by DBScan
These maps were generated using the Sci-Kit Learn library for Python

Parameter Estimation
• By finding the “elbow” of a K-Nearest Neighbors graph you can more accurately choose an ε for a given minPts
• You can run this for the full set of points, to get an ε
 • minPts can then be determined using the above result and an inverted K-Nearest Neighbors

Takeaways
• Small variance in parameters have a large impact on outcome
• DBScan does not create many meaningful crime clusters on a macro scale
 • Typically outputs one large cluster that covers the entire city
 • Small clusters can help highlight or identify a location associated with increased crime
 • Smaller clusters can be difficult for user to distinguish and therefore utilize

This work sponsored in part by NSF Award ACI-1461264