

Problem Statement

- How do I generate better probabilistic forecasts for natural gas demand?
- How can I use the new available technologies to generate these predictions?

Business Problem

- Want to avoid penalty
- Want to keep flow below contractual maximum

Proposed Method

- Autoregressive recurrent network
- LSTM cells
- Random Sampling from previous outputs

Probabilistic Forecasting using Deep Neural Networks Shivani Kohli¹ and Richard J. Povinelli² Department of MSCS¹, Department of EECE^{2,} Marquette University

Why Deep Learning?

- Excellent results with Natural Language processing
- Successful in image captioning
- Good results for wind¹, solar¹ and electricity¹ forecasts

Why Probabilistic Forecasts?

- Show a range of possible values
- More helpful to diagnose point forecast⁴
- Better visualization possible

Result

Result using Graphical Calibration Score²

Evaluation Metric

Pinball Loss Function

$$L(y_{\tau}, z; \tau) = \begin{cases} (y_{\tau} - z)\tau & y\\ (z - y_{\tau})(1 - \tau) & z \end{cases}$$

$$L_{avg} = \frac{1}{99} \sum_{n=1}^{99} L(y_{n/100}, z; n/$$

- y_{τ} : predicted value for quantile τ
- z: actual value
- τ : quantile of prediction

Conclusion

- Deep learning-good for natural gas probabilistic forecasts
- Good results in general
- Peculiar results for last two years of data

Acknowledgements

National Science Foundation, MSCS, GasDay, Drs. Petra Eccarius Brylow, Dennis Brylow, Kim Factor, and George Corliss

References

[1] Din Gulam Mohi Ud, and Angelos K. Marnerdies. Short term power load forecasting using Deep Neural Networks - IEE Explorer Document

[2] Saber, "Quantifying forecasting Methods", unpublished dissertation

(100)

