Data Assimilation for Fluid Dynamic Models: Finding Flow Paths of an Object Through Water

Student: Amy Thompson **Mentor:** Dr. Elaine Spiller
Department of Mathematics, Statistics and Computer Science, Marquette University

Motivation
Given observational data taken from the trajectory of an instrument flowing in an unknown velocity field, can we recreate the velocity field inducing this motion?

Methods
Data Assimilation is a process that merges observational data with a mathematical model.

Strategy
- **Strategy Continued**
 - **1D Sampling Example:** Using Eulerian data assimilation where the observations are fixed. Assume a steady flow; velocity does not change with time.
 - Low degree polynomial fit of data for 1st proposal
 - Prior draws from frequency space, random coefficients \(a_n\) and \(b_n\) of Fourier Series
 - Accept proposal \(v(x)\) from prior draw if it better fits the observations, else repeat initial proposal.

Results: Posterior Sampling
- A graph of the area between the 5th and 95th percentile of the posterior distribution and the mean of the distribution.
- A graph showing the posterior distribution conforms to the truth only in the section where observations are available.

Results: Posterior Sampling Continued
- The Eulerian 1D sampling performs according to strategy expectations. To achieve the goal of recreating a velocity field from given observational data, there remains the following current & future work:
 - Adapt to Lagrangian data-update likelihood
 - Adapt the strategy to 2D sampling
 - Apply the strategy to data from Dr. Ani Hsieh’s lab

Selected References
2. Elke Thönnes. Lecture Notes on Monte Carlo Methods University of Warwick.

Fourier Series (FS)
- Most functions can be described as a series of sines and cosines.

\[
f(x) = \sum_{n=1}^{\infty} a_n \cos(2\pi nx) + b_n \sin(2\pi nx)
\]

Observe Velocity Field
Prior
Data
Fourier Series
MCMC

Posterior

Acknowledgements: This work was supported by National Science Foundation grant CCF-1063041.