XinuPi: Porting a Lightweight Educational Operating System to the Raspberry Pi

Eric Biggers and Dr. Dennis Brylow (mentor)

Motivation
Operating systems education suffers from a lack of easily accessible platforms and the high complexity of modern operating systems such as Linux. As a result, courses often use textbooks or simulations rather than real operating systems and hardware; this is not as helpful to students.

Raspberry Pi
The Raspberry Pi is a tiny, $35 computer designed for educational use. The latest version has 512MB of RAM, an ARM CPU, a GPU, HDMI output, 2 USB ports, an Ethernet port, and SD card interface. It normally runs GNU/Linux. To use, users must insert an SD card, apply power, and connect other devices such as a keyboard and monitor.

Embedded Xinu
Embedded Xinu is a re-implementation of the classic "Xinu" design for modern RISC architectures. It is a simple UNIX-like operating system designed for educational use. Embedded Xinu contains several orders of magnitude fewer lines of code than Linux-based software stacks, which have millions of lines of code.

USB Support
Like many modern PCs, the Raspberry Pi relies heavily on USB in order to attach devices such as keyboards and mice. In addition, the Ethernet adapter on the Model B is internally attached to the USB. Although USB is very complicated, we have implemented a relatively simple USB subsystem for Embedded Xinu.

USB Host Controller
The primary challenge of supporting USB on the Raspberry Pi is driving the nonstandard, undocumented Synopsys USB Controller. However, we have implemented a working driver for this hardware that is ~20 times smaller than the corresponding Linux driver. We plan to fully document XinuPi on the Embedded Xinu wiki (http://xinu.mscs.mu.edu), including previously undocumented hardware, our code, and instructions for a lab setup.

Future and Other Work
Farzeen and Tyler’s posters describe other aspects of the XinuPi port. We also had to implement low-level functionality such as interrupt handling, context switching, and a UART driver. We plan to fully document XinuPi on the Embedded Xinu wiki (http://xinu.mscs.mu.edu), including previously undocumented hardware, our code, and instructions for a lab setup.

Ethernet support
The Raspberry Pi model B has an integrated USB Ethernet Adapter (SMSC LAN9512), which, although not documented, we wrote a driver for. As a result, networking is now supported on XinuPi and it can be used for networking courses. Alternatively, XinuPi can be set up as a back-end network bootloader that loads experimental student kernels in the same way as in the current Embedded Xinu lab (which uses Linksys wireless routers).

USB Ethernet Adapters
USB Ethernet adapters like the SMSC LAN9512 work by sending and receiving packets over the USB bus via USB bulk transfers.

USA: 134217728 bytes physical memory.
32768 bytes reserved system area.
3776384 bytes Xinu code.
65536 bytes stack space.
130343040 bytes heap space.

This work was supported by National Science Foundation grant CCF-1063041.