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Abstract

Data assimilation is the merging of observational data into a mathematical model. Thus,
data assimilation is particularly important in the field of fluid dynamics and, given data taken
from the trajectory of an instrument flowing in an unknown velocity field, can be used to
recreate the velocity fields inducing the motion. This study examines the efficacy of a strategy
which constructs a posterior distribution to represent the underlying velocity field. The strat-
egy, based on Bayes Theorem, allows for the construction of the posterior distribution from
the merging of the data, taken from a known function, and a mathematical model based on
Fourier Series, with the random sampling of the coefficients according to Metropolis-Hastings
within Markov chain Monte Carlo simulation. The results from the study, for 1-dimensional
sampling in Eulerian assimilation, produce a posterior distribution that appropriately induces
the observed data and therefore motivate the 2 dimensional sampling, in Eulerian assimilation,
as well as further study with Lagrangian assimilation using lab data.
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1 Introduction

The motion of an object through a fluid is related to the flow of the fluid in which it rests. This
is a question in fluid dynamics that has been answered in the past using differential equations.
To model this flow, or velocity field, using differential equations, there is a need for functions
that express the motion of the fluid. These functions are often unknown or difficult to work
with. Data assimilation provides an alternate approach to modeling an unknown velocity field
using observational data and merging it with an emergent mathematical model. The goal of
this research is to recreate the velocity field inducing the motion of observational data taken
from the trajectory of an instrument flowing in an unknown velocity field. The strategy of this
research is to merge observational data with its Fourier Series representation using Metropolis-
Hastings random sampling of the Fourier Series coefficients, within a Markov chain Monte
Carlo simulation.

2 Background and related work

Data assimilation is a process that merges observational data with a mathematical model. The
result is an objective estimate of the state, which can be propagated through the model to
obtain a prediction [2]. There have been many forms of data assimilation but the one used for
this research is based on the Kalman filter. The Kalman filter was developed by Rudolf Emil
Kalman and is where most data assimilation techniques come from. Using the Kalman filter
for a linear system with Gaussian observation error, provides an exact mean and covariance of
Gaussian distributions in these states, which is the prior distribution and posterior distribution
respectively [1]. The use of the Kalman filter, or derivatives of the Kalman filter have been
used in data assimilation to address fluid dynamic models; one such example is the Ph.D. thesis
by Damon McDougall. This research is based off the work done by McDougall [2].

2.1 Bayes Theorem

Bayes Theorem gives the posterior distribution-the probability of an unknown observation

conditional on the observed data-as proportionate to the prior distribution times the likelihood
oo

of the data. Remembering from probability theory, that 0 < p(z) < 1 and / p(z)dx = 1.

oo

Given a velocity field v and data 6,
p(v|0) o< p(v)p(flv).

2.2 Types of data assimilation

As there are many different forms that data can be collected in, and also many different methods
to model data, data assimilation has various types, many of which will not be discussed in this
paper. The types of data assimilation used in this research are smoothing, Eulerian, and
Lagrangian data assimilation.

2.2.1 Smoothing

Smoothing data assimilation is the process of estimating the state using all possible data [2].
For a given model and given observations, smoothing data assimilation makes a prediction
about the model based upon all of the observations.



2.2.2 Eulerian data assimilation

There are two types of data assimilation that we will look at: Eulerian and Lagrangian. Eulerian
data assimilation is when the path of an object is traced across some fluid. We observe a velocity
field with noise where the observations are fixed. We assume a steady flow and so velocity does
not change with time. For a velocity field v, of a fluid at fixed points in space and time t,

y=v(z,t) +n

where n is from an i.i.d. standard normal distribution [2]

2.2.3 Lagrangian data assimilation

Lagrangian data assimilation is when the object moves with the fluid,

y==z(t)+n
where n is from an i.i.d. standard normal distribution and z is the position of the object and
the derivative of z equals v(z,t) [2].

These two types of data assimilation have techniques similar to each other. The distinction
being that Eulerian data assimilation focuses on the object that does not move with time,
while Lagrangian data assimilation focuses on the flow on an object with time. We begin our
strategy working with Eulerian data assimilation.

2.3 Fourier Series

Fourier Series is a method of approximating a function very similar to Taylor Series. Fourier
Series uses a summation of sines and cosines as an orthogonal basis over the given function
space. The Fourier Series representation of a function f is:

f(x) = Lao+ Z an, cos(nx) + Z by, sin(nz)
n=1 n=1
where
a0 = 5 f(z)dx

an = %/W f(x)cos(nx)dx

bn = = f(z)sin(nz)dz [3]

An example of approximating a function with a Fourier Series can be found in Figure 1;
graph(a) shows the function as a black line and the red line as a loose fit using 8 data points;
graph (b) shows the same function being approximated by a Fourier Series using 16 data points;
graph (c) shows the same function being approximated by a Fourier Series using 32 data points.

As the data points double, the approximation better fits the original function.

2.4 Markov chain Monte Carlo Simulation

Markov chain Monte Carlo (MCMC) simulations provide a way to draw samples from an
unknown target distribution. Using MCMC simulations when the target distribution is a
posterior distribution, these simulations can be used for data assimilation [2]. We now provide
a brief description of the components of MCMC used for this research: Monte Carlo methods,
Markov chains, and Metropolis-Hastings sampling.



(a) Fourier Approximation with 8 data points (b) Fourier Approximation with 16 data points

(c¢) Fourier Approximation with 32 data points

Figure 1: Fourier Series Approximation of a Function

2.4.1 Monte Carlo Methods

Monte Carlo Methods are a way to approximate an integral. Given the function f, integral I is:
1
1= / f(z)dx

0

Using Monte Carlo methods, the integral can be approximated by:
1
I~ / mg(av)d:v
o 9(x)

Where g(z) is a density on [0, 1] such that if f(z) # 0 then g(z) > 0 [4]. From statistics we
know that

T=Ey(463)

Where E, is the expections with respect to the distribution of g. We then produce an i.i.d.
sample from the distribution for g and set

k i
"t

The law of large numbers tells us that I converges to I with probability 1 as k approaches
infinity [4].

2.4.2 Markov chains

A Markov chain is a collection of random variables X = { X,k =0, 1,2, ...} where the next step
in the chain is independent of any steps in the chain prior to the current one. A random variable
can be generated by a random number generator. There are many random number generators
available to be used in computations, in all actuality, these are really pseudo-random number
generators as true randomness is impossible to attain. Many of these pseudo-random number
generators use algorithms based on prime numbers to give the impression of "randomness.” For
this research, Matlab’s randn and rand funtions are used. The rand function provides a random
number between 0 and 1 based on the uniform distribution. The randn function provides a
random number based on the standard normal distribution.



(a) Initial sample from polyfit of observations (b) Sample from prior draw

(¢) Evaluation of sample for step K+1

Figure 2: Metropolis-Hastings sampling with MCMC

For the purposes of this research, we assume that the Markov chain is time homogeneous.
This allows for greater ease when dealing with the Markov chain. We also assume our Markov
chain is ergodic, meaning that for a discrete time Markov chain on a discrete state space, the
Markov chain is irreducible, aperiodic, and positive recurrent. An ergodic Markov chain has a
limit distribution and guarantees a full sampling of the state space [4].

Another feature of working with Markov chains is the burn-in. For any Markov chain, there
is an initial period of steps where the values are far from the truth. These initial steps are
discarded before evaluation of the Markov chain. The size of the burn-in period is left to the
discretion of the user; generally determined by trial and error. We chose to discard a burn-in
period of the first 20% of the overall sample size.

2.4.3 Metropolis-Hastings Sampling

Within the MCMC simulations there are multiple ways to sample. We use the Metropolis-
Hastings sampling method. This method performs as follows: Let f(x) be the target density.
Let g(z),z € S be the proposal distribution. Suppose X, =z € S.

Sample Z = z from ¢(z),z € S.
Accept Z = z with probability:

f(Z)}

a(z, z) = min{l, £33

If Z = z is accepted, set X, 41 = z. Otherwise, set X,,+1 = x [4]. An example of Metropolis-
Hastings within MCMC can be found in Figure 2; graph (a) shows the observational data with
the initial sample taken from a low order polynomial fit from the data points; graph (b) shows
the proposal sample as it relates to the initial sample and the observations data; graph (c)
shows the evaluation of the proposal sample versus the initial sample using the sum of linear
least squares.

3 Preliminary

For this study, we solve for a velocity field as the posterior distribution. We solve for the
posterior distribution using Bayes Theorem, with Fourier Series taking the role of the prior



and Metropolis-Hastings random sampling of the Fourier Series coefficients as the likelihood.
Our resulting method is as follows:

p(velocity field|data) < p(Fourier Series)p(data|Fourier Series)

To set up our simulation, we use the following map:
y=G(z)+n

Where G is our model, x is the state, y is the observation, and n is the noise. We found the
likelihood, @ using ® = 1||G(2) — y||* [2]. The 2-norm was used for this likelihood.

We construct a draw from the prior using the Fourier Transform. The random draw is of
the Fourier coefficients. We construct the vector of coefficients in the frequency domain with
the following guidelines:

1. The vector is of an odd size in length, accounting for ao all a,, and all b,
The value for ag =0

The number of random values of a,, are equal to the number of b,

The values in b, are the complex conjugates of the random values in a,

The vector is constructed in accordance with Matlab’s layout for the fft vector

S WD

The number of random values for each a, chosen represent the dimension of the Fourier
Series

7. The resulting functions after the ifft function is called must be real-valued functions (no
imaginary parts)

We normalize the draws from the prior, £, according to the following algorithm:
2= (1— %) uli] + ¢

Where £ is set to 1 and w[i] is the current sample [2].

4 Methods

The methods used for this research were to begin with a 1D point sampling, move on to a 1D
Eulerian function sampling within MCMC. The following sections summarize the work done
to date for this research.

4.1 1D Point Sampling

Suppose we have a simple target function, f(x), consisting of sines and cosines. Generate
a random x-value within the support of the function and establish it as the first sample.
Generate a second random x-value, #, according to some proposal distribution that has the
same support as the target distribution, both Gaussian and Uniform distributions would be
appropriate proposal distributions. Evaluate & using the Metropolis-Hastings sampling method.
Generate a distribution of Z-values and plot a histogram and compare to the target function
(Figure 3). The histogram should fit the curve of the target function. Next, evaluate the
correlation of the Z-values to check that the entire function space is being sampled.



(b) Histogram of Samples
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(¢) Autocorrelation

Figure 3: 1D Point Sampling

4.2 1D Eulerain Function Sampling within MCMC

Suppose we have a simple target function, u, consisting of sines and cosines. Generate an evenly
distributed subset of data points from the target function. The use of multiples of 2 for number
of original points in the function as well as for the number of points in the subset allows for better
functionality of the Matlab Fast Fourier Transform fft and its inverse ifft. An initial sample
function, v, is created from a low order polynomial fit to the subset of data points and sampling
from the frequency domain for the Fourier Series coefficients uses Metroplis-Hastings within
MCMC simulation. The graphs in Figure 4 provide an example of the research work; graph
(a) shows 40 samples taken from the posterior distribution generated from given observations.
The distribution approximates both the underlying function and the given observations within
an acceptable range; graph (b) shows the 5th through the 95th percentile of the posterior
distribution and how well it approximates the truth and given observations, as well as showing
the mean of the posterior distribution; graph (c) shows what happens when observations are
given for only a portion of the support domain, the posterior distribution only approximates
the truth and given observations well within the portion of the domain where the likelihood
can be evaluated. The following code gives a overview of the code used for this simulation.

Pseudocode:

Choose target function

Select subset of x and y values and set as exact

Fit polynomial to subset of values

Generate observations from randn added to exact

Set initial sample to polynomial fit

Get next sample from RandomDraw

Normalize next sample as shown above

Add next sample to initial according to Metropolis-Hastings algorithm

Evaluate likelihood of initial and likelihood of next

© % N oW
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Accept next sample according to Metropolis-Hastings algorithm



(a) 40 Samples from Posterior Distribution (b) 5-95 Percent of Posterior Distribution with Mean

(c) Evaluation of Partial Support for Posterior Distri-
bution

Figure 4: 1D Eulerian Function Sampling

5 Conclusion and Future Work

The research on 1D point sampling and 1D Eulerian function sampling is consistent with
expectations from the methods used. The Metropolis-Hastings random sampling of the Fourier
coefficients within the MCMC simulation provides a posterior distribution that approximates
the given observational data. The current work for this research involves 2D Eulerian function
sampling as well as a shift to Lagrangian data assimilation. Future work will be to gather
observational data from tank in Dr. Ani Hsieh’s lab.

The ability to recreate a velocity field from given observational data is important in the
area of fluid dynamics. Using data assimilation to find this velocity field could provide a more
cost effective means of creating models of fluid dynamics which is crucial to industries related
to transportation services and weather prediction.
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