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Abstract

A food web can be modeled by a digraph,D, where there is an arc from vertex x
to vertex y if species x preys on species y. The (1,2)-step competition graph of this
food web, C1,2(D) introduced in 2001 by Factor and Merz, has the same vertex set as
D and has an edge (x, y) if and only if there exists a vertex z 6= x, y such that either
dD−y(x, z) = 1 and dD−x(y, z) ≤ 2 or dD−x(y, z) = 1 and dD−y(x, z) ≤ 2. In this paper
we characterize the digraphs which generate (1,2)-step competition graphs which are
complete on all non basal vertices.

1 Introduction

The aim of this paper is to apply graph theory to the study of food webs. Food webs are
towers of organisms in which each organism depends, for energy, on one or many other
organisms in the ecosystem represented in the web [1]. Mathematically, these webs can
be modeled by acyclic digraphs where the set of vertices V (D) represents the organisms
and the set of directed arcs A(D) represents relationships between predators and prey. An
cycle in a digraph is a path in D(V,A) u1, a1, u2, a2, ..., ut, at, ut+1 where each ui1 ≤ i ≤ t is
distinct and u1 = ut+1 [4]. An acyclic digraph is a digraph which has no cycles. From these
acyclic digraphs we are then able to study more closely interactions and energy transfer in
an ecosystem. One specific area of interest is the study of competition within an ecosystem.
Competition graphs of the digraphs representing food webs highlight relationships between
predators which share prey and are therefore, to an extent, codependent. By understanding
competition relationships, ecologist are able to study the resiliency and adaptability of an
ecosystem. A competition graph of D(V,A), a digraph which models a food web, is a
graph G(V,E) on the same vertex set V with edge {(vi, vj)} ∈ E(G) if and only if there
is a vertex vk ∈ V (D) such that (vi, vk) and (vj, vk) are directed arcs in E(D) [2]. This
original competition graph, presented by Cohen, shows the relationships between species
which compete directly. A variation, the 1,2-step competition graph, developed by Factor
and Merz, allows for the study of relationships between predators who may share a food
sources more indirectly. Factor and Merz define the (1,2)-step competition graph of digraph
D as a graph C1,2(D) on the same vertex set V with edge {x, y} ∈ E(C1,2(D)) if there exists
some x, y 6= z ∈ V such that one of the following hold:

1) dD−y(x, z) ≤ 1 and dD−x(y, z) ≤ 2
2) dD−x(y, z) ≤ 1 and dD−y(x, z) ≤ 2
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Let D − v for v ∈ V denote the digraph D less vertex v and all arcs incident with v,
and let dD(x, y) represent the distance from x to y in D [3]. The (1,2)-step competition
graph then allows us to represent the food web by edges which show relationships between
species which directly and indirectly compete for food. We intend to use properties of the
(1,2)-step competition graph to inform the study of acyclic digraphs which generate them,
and conversely, to use the digraph representations of food webs to inform the study of the
properties of (1,2)-step competition graphs.

2 Methods

There are two ways from which we are able to approach the problem of determining the prop-
erties of a digraph with a (1,2)-step competition graph which is complete on all non-basal
vertices. First we may look at forbidden subgraphs of the digraphs. Forbidden subgraphs
would be relationships in the digraph which fail to generate connections in the (1,2)-step
competition graph. We then use these forbidden subgraphs to illuminate properties of di-
graphs which do produce complete components of (1,2)-step competition graphs. The second
approach to this question is to look at all the possible digraphs which give rise to (1,2)-step
competition graphs which are complete on all non-basal vertices. The goal with the second
approach is to use these digraphs to observe patterns which are constant for all digraphs
which have compete components in their (1,2)-step competition graph. These patterns then
in turn may reveal properties which are necessary for a digraph to generate a (1,2)-step
competition graph which is complete on all non-basal vertices.

3 Definitions

Because we are looking at applying graph theory to ecology, we must first clarify the language
which will be used throughout the following results. Let us define a basal vertex, or basal
species, as a vertex which has no outgoing arc. Conversely, we will define a top vertex, or a
top predator, as a vertex which has no incoming arcs. For our purposes, we will also define
a herbivore as a species which only has basal vertices in its outset.

4 Results

Much of this work arose from somewhat linear thinking. As (1,2)-step competition concerns
itself with path lengths, it logically follows that if we wish our (1,2)-step competition graph
to be complete on all non-basal species that the overall path lengths in these digraphs, or
food webs, must somehow be similarly limited. The first two conditions below arose from
this path of inquiry.

Lemma 1. for all acyclic digraphs, there exists atleast one vertex which contains only basal
vertices in its outset

Proof. Suppose not. Let D be an acyclic digraph which has no vertices with an outset which
contains only basal vertices. By Theorem 11.13 in Roberts [4], D is acyclic if and only if it

2



has a topological sorting, or a labeling of its vertices such that (vi, vj) ∈ A(D) implies i < j.
Let D have n vertices, suppose that k < n of those vertices are sink vertices. Label these
vertices vn−k, vn−(k−1), ..., vn. Consider all remaining vertices which contain one or more of
the sink vertices in their outset. Without loss of generality we can let vn−(k+1) be one such
vertex. By our choice of D however, the outset of vn−(k+1) must contain at minimum one
vertex which is not a sink vertex. Therefore there exists (vn−(k+1), vn−(k+h)) ∈ A(D) where
h ≥ 2. We then have i > j which implies there is no topological sorting for D which in turn
implies that D has a cycle which is a contradiction.

Lemma 1 basically informs us that every food web has atleast one herbivore. As her-
bivores behave differently from other intermediary vertices, it is important to note their
existence in the acyclic digraphs with which we are concerned. Lemma 1 also directly pro-
vides for Theorem 1 which, by the definition of (1,2)-step competition and the existence of
herbivores enables us to limit the height of our food webs.

Theorem 1. If the (1,2)-step competition graph of an acyclic digraph is complete on all
non-basal vertices, then each vertex which is not a basal vertex is connected to some basal
vertex by a path of length no greater than two.

Proof. Consider D an acyclic digraph. Assume there exists some y ∈ V (D) with a minimum
path length of 3 to any basal vertex. By Lemma 1, there is atleast one vertex in D such
that the only vertices in its outset are basal vertices. Let us denote this vertex as x. By
the definition of a (1,2)-step competition graph, x only (1,2)-competes with vertices that
are in the inset of one of the vertices in its outset, and with the vertices in the insets of
those vertices. All such vertices have a path of length of 1 or 2 to the basal vertices, which
precludes y from (1,2)-competing with x. Therefore the (1,2)-step competition graph of D
is not complete.

The conditions above are clearly necessary as Lemma 1 provides for Theorem 1, which
in turn describes a forbidden subgraph. The condition however which places a maximum-
minimum path length in the digraph from top vertex to basal vertex is not sufficient to imply
completeness of the (1,2)-step competition graph on all non-basal vertices. The remaining
conditions arose from counterexamples, graphs which showed that Theorem 1 is not sufficient
to imply completeness.

Lemma 2. If the (1-2)-step competition graph of an acyclic digraph is complete on all non-
basal species, all herbivores must directly compete with all other herbivores.

Proof. Suppose not. Let D be an acyclic digraph which has vertices x, y such that O+(x)
⋂

O+(y) =
∅. By definition of an herbivore, the greatest path length from any herbivore to any basal
species is a maximum length of one, therefore, there is no possible way for x and y to (1,2)-
compete, and by our definition of x and y, they do not directly compete. Therefore x and
y are not connected in the (1,2)-step competition graph of D and as such the (1,2)-step
competition graph is not complete on all non-basal vertices, which is a contradiction.

Lemma 2 is self evident to the extreme. It however states directly the necessity of dis-
tinguishing herbivores from other intermediary species. This becomes relevant when looking
at the various ways in which top species and omnivores interact both with each other and
with herbivores and basal vertices.
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Lemma 3. If there is a vertex with a minimum path length greater than one, which has an
outset of size one, in an acyclic digraph, then the (1,2)-step competition graph of the acyclic
digraph is not complete on all non-basal vertices.

Proof. Consider D, an acyclic digraph. Let y be a vertex such that the minimum path from
y to any basal species is 2 and O+(y) = {x} thus |O+(y)| = 1. Clearly, O+(y)

⋂
O+(x) = ∅

so x and y do not directly compete. By our definition of y, any path from y to an element in
O+(x) must, by necessity, pass through x and the path therefore does not exist is D−x and
therefore by the definition of (1,2)-step competition, x and y do not (1,2)-compete. Thus
x and y are not connected in the (1,2)-step competition graph of D and as such, it is not
complete on all non-basal species.

Theorem 2. If the (1,2)-step competition graph of an acyclic digraph is complete on all
non-basal vertices, then all vertices with a minimum path length of two to a basal species has
a second path of maximum length two to the same basal species.

Proof. Suppose not. Let D be an acyclic digraph with a complete (1,2)-step competition
graph. By Theorem 1, all acyclic digraphs with complete (1,2)-step competition graphs must
have a maximum-minimum path length of two between each vertex and a basal species.
Consider x, a vertex with a minimum path length of two to any basal species. By Lemma 3
|O+(x)| ≥ 2. Suppose therefore |O+(x)| = 2. Let x,w, z be the original path of length two to
basal species z. First, define x, u, v, z a path of length three to z. There is no path of length
two in D − w to z therefore x and w do not (1,2)-compete and the (1,2)-step competition
graph of D is not complete which is a contradiction. Now consider a path x, u, y, a path of
length two to a different basal species y. There is in this case also no path in D − w from
x to z of length two which implies that x and w do not (1,2)-compete and the (1,2)-step
competition graph of D is not complete which is a contradiction.

5 Future Work

Although Theorem 2 is also a condition which is necessary for a digraph to generate a (1,2)-
step competition which is complete on all non-basal species, it is not, nor is Theorem 1, nor
Theorems 1 and 2, sufficient to imply completeness on all non-basal species in a (1,2)-step
competition graph. It appears that studying the ratio of top vertices to intermediary vertices
and manipulating the size of the insets and outsets of these vertices may enable us to coerce
a digraph with a (1,2)-step competition graph which is complete on all non-basal vertices.
This may or may not be relevant however because we may easily coerce a complete on all
non-basal vertices (1,2) step competition graph by forcing all vertices to compete for a single
basal vertex. This however in rather uninteresting and not a pracical model for a real food
web. I am therefore working with the following theorem in conjunction with the previous
results.

Theorem 3. Let n be the number of intermediary vertices in an acyclic digraph D and
vi1 ≤ i ≤ k be top vertices in D, If |O+(vi)| ≥ n∀vi ∈ V (D) then C1,2(D) is complete on all
non-basal vertices.

This Theorem has yet to be proven or disproven.
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