
Optimizing the Performance and
Energy of LU Decomposition on a

Heterogeneous Multicore System with
GPGPUs and DVFS

Brian Hunter
∗

University of Wisconsin - Madison
bdhunter@wisc.edu

7/31/2013

Abstract

The goal for computer applications is to run with maximal performance and minimal energy consump-
tion. This is a critical issue in high performance computing where speed is increased at the expense of using
large amounts of energy. For continued progress in this field, it is essential to develop methods which will
allow for a low energy usage while still maintaining high performance. This study explores ways in which
to lower the energy consumption of high intensity computations by experimenting with heterogeneous
computation, frequency scaling, and dynamic scheduling on the LU decomposition application.

I. Introduction

In the field of high performance computing,
a continuous growth of computer performance
is desirable. Currently, the world’s fastest su-
percomputer, Titan, located in the U.S., runs
at 17.3 PetaFlops, or 17.3x1015 operations per
second. Performance that breaks the ExaFlops
barrier, or 1018 operations per second is a major
goal to achieve in the next decade. However,
pushing towards this goal has become difficult
with finding ways to gain performance with-
out using too much energy. The Titan super-
computer runs at 8.3 MegaWatts and scaling
that figure to ExaFlops would be staggering.
Recently, GPGPUs (General Purpose Graph-
ics Processing Unit) have been explored as a
means to obtain energy efficient computation,
measured in GFlops (billions of operations per
second) per watt. Along with the new general
computing capability, new GPGPUs are also
capable of dynamic voltage frequency scaling

(DVFS), which allows them to run at various
frequencies, allowing them to be scaled down
when they are not heavily used. CPUs (Cen-
tral Processing Unit) have also been equipped
with this feature. The purpose of this research
is to explore the benefits of using a heteroge-
neous approach to computing and implement-
ing DVFS on both CPUs and GPUs to optimize
the performance and energy of running an LU
decomposition application.

All tests are run on a heterogeneous mul-
ticore system. There are sixteen Xeon Sandy-
Bridge E5-2670 cores, each of which has a de-
fault speed of 2.6 GHz, and the GPU used is
a Tesla K20c, which has 4799.6 MB of local
memory, a default memory speed of 2.6 GHz,
and a core speed of 705 MHz. Each of Xeon
cores is capable of running at 1.2 to 2.6 GHz,
going up by 0.1 GHz, and 2.601 GHz. The
K20c is capable of six frequencies: 2600x758,
2600x705, 2600x666, 2600x640, 2600x614, and

∗Thank you to Professor Rong Ge of Marquette University Department of Mathematics, Statistics, and Computer Science
for advising me during this project.

1



324x324 MHz, where the speeds are given by
memory and core frequency, respectively.

Two linear algebra libraries are used for
the tests, MAGMA and MORSE. All tests run
solely on the CPU used the MORSE implemen-
tation of LU decomposition with 16 threads.
Tests implementing both the CPU and GPU are
run with MAGMA using 1 GPU and 1 thread.

II. Related Work

Accelerators such as GPUs are being ex-
plored as a means for energy efficient comput-
ing, especially in recent years. New libraries
such as the MAGMA library have been imple-
mented to run on heterogeneous systems for
increased performance on linear algebra func-
tions. These libraries contain methods to mini-
mize the overhead for mapping data between
the CPU and GPU and have had promising
results in terms of speed-up.

A study by Qiang Liu and Wayne Luk[3]

shows the potential for speed-up and energy
efficiency using a GPU. They tested single pre-
cision matrix multiplication with a problem
size of 20,480 and found that the a CPU+GPU
combination gave 1.08 GFlops/Watt which
is 24x more efficient than running only on
the CPU which gave 0.06 GFlops/Watt. Fur-
thermore, their GPU for the computation,
an nVidia C2070 GPU has a throughput of
558.94 GFlops and power rating of 164.4 Watts,
which gives the maximum efficiency of 3.47
GFlops/Watt. On the other hand, the CPU,
a Xeon w3505, runs at 151 Watts for 12.83
GFlops as a maximum throughput; an effi-
ciency of 0.085 GFlops/Watt. Again, the GPU
has shown exemplary performance and en-
ergy efficiency. Their findings also suggest that
GPUs have higher performance and more en-
ergy efficiency than another accelerator, FPGA
(Field-Programmable Gate Array).

More can be done in for efficiency with us-
ing GPUs in terms of scheduling, to make sure
that no computational resources are wasted.
For this study, the strategy is to turn down
components when not in use to lower power
draw. Alternative approaches exist, a notable
one being the strategy in [2], in the software

Qilin. Instead of depending on the programmer
to modify an application, as is the case for this
paper, the research in [2] proposes an adaptive
software to map work to open computational
resources. The reason for adaptive software
is that a hard-coded modification made by a
programmer is only relevant to the system on
which they are running and will not scale well
to others. Depending on the application and
system, the distribution of work that provides
the best performance can be variable. By using
adaptive mapping, which takes advantage of a
heterogeneous system, the researchers demon-
strate that the speed-up is greater than using
only GPU or only GPU, and is typically also
faster than a static distribution of the two. Us-
ing both CPUs and GPUs provides the best
performance in their results, which is explored
in this paper as well.

III. Methods

A comparison of a CPU-only approach and
heterogeneous approach is done by running
one iteration of an identical identical problem
size for both over all range of CPU and GPU
frequencies, and observing the performance
and energy used. These figures also show
which frequency gives the best performance
for energy used. For the CPU-only runs, the
power trace is analyzed to see the behavior of
the different frequencies over the course of the
runtime.

The heterogeneous method is further ex-
plored by running six iterations at four differ-
ent problem sizes. For each problem size, the
performance and energy is observed as well as
the power trace to see the computational de-
mand on GPU over time and how the different
frequencies behave during runtime.

DVFS is used to dynamically schedule the
runtime by modifying the MAGMA LU de-
composition method to run the GPU at the
maximum frequency during periods of heavy
computation, scale down the GPU when not in
use, and scale down the CPU cores not being
used. The performance and energy of the mod-
ified run are compared the performance and
energy to the standard method.

2



IV. Results and Discussion

The comparison between a CPU-only and
heterogeneous approach is demonstrated on
an 18,000 square matrix. Results of the hetero-
geneous run are taken by the fastest run over
ten runs. There is more variation in using the
CPU as there are background processes run-
ning. To accommodate for such variation, the
results for the CPU-only run are averaged over
six runs, with the minimum and maximum
performance also recorded.

Figure 1: Heterogeneous performance on an 18000
square matrix.

Figure 2: CPU-only performance on an 18000 square
matrix.

Table 1: Efficiency for GPU Frequencies

Frequency Time Energy Efficiency
MHz Seconds Joules GFlops/Watt

324 25.73 10113.15 0.24
614 17.6 8785.79 0.28
640 16.77 8390.03 0.30
666 15.78 8390.19 0.30
705 13.4 5974.28 0.42
758 13.38 3519.76 0.54

It is clear to see that the heterogeneous
method achieves a much higher performance
than using only the CPU. The highest perfor-
mance for CPU-only is 12.07 GFlops at 2.6
GHz,whereas the GPU obtained 290.57 GFlops
at 758 MHz, a 24x performance increase. Going
even further into the individual GPU frequen-
cies, the computational efficiency increases as
the cores are run faster. Better performance
comes with increased efficiency, which is excel-
lent for finding more efficient means of comput-
ing. These tests demonstrate the importance of
a heterogeneous approach and that for a single
iteration, using the highest GPU frequency is
optimal.

Figure 3: Energy consumption of GPU frequencies for
an 18000 square matrix.

3



Figure 4: Energy consumption of CPU frequencies for
an 18000 square matrix.

With a 24x shorter runtime, significant re-
sults are also seen in the energy consumed by
each approach. The heterogeneous approach
consistently used less than 1

15 th of the energy
as the CPU-only variation. It is important to
note that the primary reason for this saving in
energy is due to the curtailed runtime, as there
is less to time to consume energy.

Figure 5: Power trace of CPU frequencies for an 18000
square matrix.

Looking at the power trace for the CPU-
only approach, the trend is more power for
higher frequencies. There is a notable increase
in the power levels for 2.6 and 2.601 GHz. Re-
ferring to the performance, this increase in
power is costly for marginally better perfor-
mance. 2.6 GHz had the fastest speed over all
runs for the CPU-only approach. This is impor-
tant to keep in consideration for the dynamic
scheduling strategy. Using 2.6 GHz for the
cores in use will be more efficient than using
2.601 GHz.

With significant improvements in both
speed and energy consumption, the heteroge-
neous approach is the best one to use. Fur-
ther analysis of this approach is important to
find the computation demands and optimal
frequencies for different sizes. Four matrix
sizes are tested: 18,000, 20,000, 22,000, and
24,480 and one test consists of six iterations of
MAGMA’s LU decomposition application.

Figure 6: Performance of heterogeneous approach for all
test sizes and GPU frequencies.

Figure 7: Energy of heterogeneous approach for all test
sizes and GPU frequencies.

There is a similar trend for all four matrix
sizes. The five fastest frequencies have almost
identical performance and energy consump-
tion, with 758 MHz having the slight lead in
performance, and 614 MHz having the lowest
energy usage. In all cases, running the GPU
at 324 MHz has significantly less GFlops, less
than half of the others for matrix sizes 20,000,
22,000, and 24,480. This also comes with a
greater amount of energy needed to run at this
frequency. Running the GPU at 758 MHz gives
the best performance with only slightly more
energy than the others, save 324 MHz. It is also

4



clear that a core speed of 324 MHz is not fast
enough to efficiently handle the computational
demand of LU decomposition. LU decomposi-
tion, using an iterative method will not require
the GPU be doing work during the entirety
of the run, thus, analyzing the power traces
for each matrix size is valuable to find where
the GPU can be scaled down, and if 324 MHz
has a power draw much lower than the other
frequencies.

Figure 8: Power trace for matrix size 18000.

Figure 9: Power trace for matrix size 20000.

Figure 10: Power trace for matrix size 22000.

Figure 11: Power trace for matrix size 24480.

The above power trace figures show that
the computational demands happen in waves,
with periods of idle time between, which is ex-
pected of an iterative method. The five fastest
frequencies (758, 705, 666, 640, and 614 MHz),
are quite similar, which matches the data in
figure 7. For the dynamic scheduling strategy,
running the GPU at 758 MHz for the compu-
tationally intense periods is the best in terms
of performance and efficiency. It costs little ad-
ditional energy for added performance. Run-
ning the GPU at 324 MHz commands much
less power than the other frequencies and it is
worthwhile to scale down the GPU to this level
when it is idle. Switching between these fre-
quencies will give computational power when
it is needed, and low power draw when possi-
ble.

With those observations, the dynamic
scheduling strategy will consist of running 2
CPU cores at 2.6 GHz, one for the system to run
on and one for MAGMA. All other CPU cores
are scaled down to 1.2 GHz to save energy. The
GPU will be switched to 758 MHz when it is
being used, and is switched to 324 MHz at all
other times. Doing this will take advantage
of the previous results of Table 1, where 758
MHz is shown to be the most energy efficient
for a single iteration. Scaling down during idle
time will prevent the GPU from wasting energy
during the times between each iteration where
the CPU is initializing the matrices. In general,
the goal is to have maximum performance for
periods of heavy computation, and minimal en-
ergy for times where there is no computation
to be done. This new method is tested for the

5



same cases and contrasted against static runs
which use all CPU and GPU cores at 2.6 GHz
and 758 MHz, respectively, for the entire run.

Figure 12: Power trace for the schedule comparison at
18000.

Figure 13: Power trace for the schedule comparison at
18000.

Figure 14: Power trace for the schedule comparison at
22000.

Figure 15: Power trace for the schedule comparison at
24480.

An analysis of the power traces show that
scaling down unused computational resources
is effective for conserving energy. These sav-
ings tend to get larger for the larger matrix
sizes. LU decomposition not only is more ef-
ficient on the dynamic schedule, but also did
not suffer performance loss.

Figure 16: Performance comparison of dynamic and
static schedules.

Figure 17: Energy comparison of dynamic and static
schedules.

6



Table 2: Energy Savings (Joules)

Size Static Dynamic Savings

18000 31349.14 29019.77 7.43%
20000 39441.71 34324.76 12.97%
22000 48749.26 43199.82 11.38%
24480 61268.85 54439.70 11.15%

Table 3: Efficiency for the Schedules (GFlops/Watt)

Size Schedule GFlops Efficiency

18000 Static 292.92 0.74
20000 Static 326.03 0.81
22000 Static 357.18 0.87
24480 Static 397.66 0.96
18000 Dynamic 291.72 0.80
20000 Dynamic 324.66 0.93
22000 Dynamic 357.6 0.99
24480 Dynamic 393.78 1.08

At each matrix size, the performance of
both the static and dynamic schedules are
within 1% of each other, well within a natu-
ral variation of runtimes. Thus, in each case,
the energy saved, over 11% for the largest three
sizes, is free energy. From the table it is clear
that the dynamic schedule is the more efficient
means of running. For the 20,0000, 22,000,
and 24,480, the dynamic schedule gains 0.12
GFlops/Watt, which is at minimum a 12.5%
efficiency gain. The dynamic schedule is more
energy efficient without having to sacrifice any
other beneficial runtime qualities.

V. Conclusion

From the significant performance increase
and energy efficiency found using GPUs for
LU decomposition and the findings of [1], [2],
and [3], there is strong evidence that GPUs are
an excellent solution for achieving high, energy
efficient performance. The heterogeneous ap-
proach is able to obtain over 20x the GFlops
and less than 1

15 th the energy of a CPU-only
approach. For optimization, using a GPU is es-
sential for this application. The development of

DVFS is also a useful tool in obtaining a lower
energy consumption. It allows to take advan-
tage of the times for which each frequency on
the computing resources is the most efficient.
During heavy workloads, a dynamic sched-
ule can use the highest frequency to obtain
the most performance and energy efficiency,
and can switch to lower speeds during light or
empty workloads to save, rather than waste, en-
ergy. For the larger matrix sizes tested, there is
about an 11% savings in the amount of energy
used. All energy conserved came without cost
to performance, which is critical to the goal
of this research. A majority of these savings
come from scaling down the GPU when not
in use, which is no surprise considering this is
where the majority of the work is done. High
performance computing can have continued
progress in speed by using GPUs as a main-
stream computing resource and by using DVFS
to schedule all resources at high speeds only
when working and low speeds when idle to
achieve substantial energy savings.

References

[1] Dong, T (14 Nov. 2012). "MAGMA: A New
Generation of Linear Algebra Library for
GPU and Multicore Architectures." Inno-
vative Computing Laboratory

[2] Kim, Hyesoon, Chi-Keung Luk, and Sun-
pyo Hong. (2009). "Qilin: Exploiting Paral-
lelism on Heterogeneous Multiprocessors
with Adaptive Mapping" Atlanta, GA:
Georgia Institute of Technology, Tech. no.
TR-2009-001.

[3] Liu, Qiang, and Wayne Luk. (2012). "Het-
erogeneous Systems for Energy Efficient
Scientific Computing." International Con-
ference on Reconfigurable Computing, Hong
Kong, China. N.p.: Springer, 64-75. EPICS.

[4] Simon, Horst. (2013). Why We Need Ex-
ascale and Why We Won’t Get There by
2020 Proc. of Optical Interconnects Con-
ference, Santa Fe, New Mexico. Berkeley,
CA: Berkeley Lab, 1-27.

7


	Introduction
	Related Work
	Methods
	Results and Discussion
	Conclusion

